高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀疏重构远近场混合源定位改进算法

傅世健 邱龙皓 梁国龙

傅世健, 邱龙皓, 梁国龙. 稀疏重构远近场混合源定位改进算法[J]. 电子与信息学报. doi: 10.11999/JEIT250165
引用本文: 傅世健, 邱龙皓, 梁国龙. 稀疏重构远近场混合源定位改进算法[J]. 电子与信息学报. doi: 10.11999/JEIT250165
FU Shijian, QIU Longhao, LIANG Guolong. A Sparse-Reconstruction-Based Fast Localization Algorithm for Mixed Far-Field and Near-Field Sources[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250165
Citation: FU Shijian, QIU Longhao, LIANG Guolong. A Sparse-Reconstruction-Based Fast Localization Algorithm for Mixed Far-Field and Near-Field Sources[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250165

稀疏重构远近场混合源定位改进算法

doi: 10.11999/JEIT250165 cstr: 32379.14.JEIT250165
基金项目: 国家自然科学基金(62301183)
详细信息
    作者简介:

    傅世健:男,博士生,研究方向为阵列信号处理、水声目标探测与定位

    邱龙皓:男,副教授,研究方向为阵列信号处理、水声目标探测与定位

    梁国龙:男,教授,研究方向为阵列信号处理、水下无人探测与跟踪、水声通信技术

    通讯作者:

    邱龙皓 qiulonghao@hrbeu.edu.cn

  • 中图分类号: TB566

A Sparse-Reconstruction-Based Fast Localization Algorithm for Mixed Far-Field and Near-Field Sources

Funds: National Natural Science Foundation of China(62301183)
  • 摘要: 协方差向量具有比原始阵列输出更高的信噪比增益,该文将远近场混合源模型扩展到协方差域,并针对稀疏重构远近场混合源定位算法时间复杂度高的问题,提出了一种基于协方差域阵列信号模型和广义近似消息传递(GAMP)-变分贝叶斯推断(VBI)的远近场混合源定位改进算法(FN-GAMP-CVBI),实现了计算效率与定位精度的有效平衡。数值仿真表明,与现有的远近场混合源定位算法相比,该文所提算法具有更高的远近场源定位精度和较低的计算时间。湖试数据结果进一步验证了该文所提算法的高效性和有效性。
  • 图  1  远近场混合源的阵列接收模型

    图  2  GAMP因子图

    图  3  各算法远场空间谱

    图  4  各算法近场定位结果

    图  5  各算法不同信噪比下的统计性能

    图  6  各算法不同快拍数下的统计性能

    图  7  各算法远场源成功分辨概率随角度间隔变化

    图  8  松花湖实验示意图

    图  9  各算法的远场方位历程图

    图  10  各算法远近场混合源定位结果与真值对比

    表  1  基于GAMP计算近似后验的算法流程

     输入:参数估计${\boldsymbol{\alpha}} $、${\beta _0}$,协方差向量${\hat {\boldsymbol{r}}_w}$,过完备字典$ {\bar{\boldsymbol{ \Phi}} _w} $。
     (1). 初始化:$l = 1$,${\hat {\boldsymbol{g}}^{(0)}} = {\boldsymbol{0}}$,${{\boldsymbol{s}}^{(0)}} = {\boldsymbol{0}}$,${\boldsymbol{S}} = {\left| {{{\bar {\boldsymbol{\Phi}} }_w}} \right|^2}$,${\boldsymbol{\tau}} _g^{(0)} = {{\boldsymbol{\alpha}} ^{ - 1}}$。
     (2). 循环执行如下步骤
      (a) 输出线性步骤
       $\begin{gathered} {\boldsymbol{\tau}} _p^{(l)} = {\boldsymbol{S\tau}} _g^{(l - 1)} \\ {\boldsymbol{\mu}} _p^{(l)} = {{\bar {\boldsymbol{\Phi}} }_w}{{\hat {\boldsymbol{g}}}^{(l - 1)}} - {\boldsymbol{\tau}} _p^{(l)} \circ {{\boldsymbol{s}}^{(l - 1)}} \\ \end{gathered} $                                  (25)
      (b) 输出非线性步骤
      $ \begin{gathered} {{\boldsymbol{s}}^{(l)}} = \left( {1 - {\lambda _g}} \right){{\boldsymbol{s}}^{(l - 1)}} + {\lambda _g}{{\boldsymbol{g}}_{out}}\left( {{{\hat r}_w},{\boldsymbol{\mu}} _p^{(l)},{\boldsymbol{\tau}} _p^{(l)},{\beta _0}} \right) \\ {\boldsymbol{\tau}} _s^{(l)} = - {{g'}_{out}}\left( {{{\hat {\boldsymbol{r}}}_w},{\boldsymbol{\mu}} _p^{(l)},{\boldsymbol{\tau}} _p^{(l)},{{\boldsymbol{\beta}} _0}} \right) \end{gathered} $                          (26)
      (c) 输入线性步骤
      $\begin{gathered} {\boldsymbol{\tau}} _q^{(l)} = {{\boldsymbol{1}} \mathord{\left/ {\vphantom {1 {{S^{\rm T}}\tau _s^{(l)}}}} \right. } {{{\boldsymbol{S}}^{\rm T}}{\boldsymbol{\tau}} _s^{(l)}}} \\ {\boldsymbol{\mu}} _q^{(l)} = {{\hat {\boldsymbol{g}}}^{(l - 1)}} + {\boldsymbol{\tau }}_q^{(l)} \circ \left( {{{\bar {\boldsymbol{\Phi}} }_w}^{\rm H}{{\boldsymbol{s}}^{(l)}}} \right) \end{gathered} $                               (27)
      (d) 输入非线性步骤
      $ \begin{gathered} {{\hat {\boldsymbol{g}}}^{(l)}} = \left( {1 - {\lambda _g}} \right){{\hat {\boldsymbol{g}}}^{(l - 1)}} + {\lambda _g}{g_{in}}({\boldsymbol{\mu}} _q^{(l)},{\boldsymbol{\tau}} _q^{(l)},{\boldsymbol{\alpha}} ) \\ {\boldsymbol{\tau}} _g^{(l)} = {\boldsymbol{\tau}} _q^{(l)} \circ {{g'}_{in}}({\boldsymbol{\mu}} _q^{(l)},{\boldsymbol{\tau}} _q^{(l)},{\boldsymbol{\alpha}} ) \end{gathered} $                              (28)
      (e)令$l = l + 1$,循环执行(a)到(e)步直到迭代次数$l$和容差$ \xi = {{{{{\left\| {{{\hat g}^{(l)}} - {{\hat g}^{(l - 1)}}} \right\|}_2}} \mathord{\left/ {\vphantom {{{{\left\| {{{\hat g}^{(l)}} - {{\hat g}^{(l - 1)}}} \right\|}_2}} {\left\| {{{\hat g}^{(l)}}} \right\|}}} \right. } {\left\| {{{\hat g}^{(l)}}} \right\|}}_2} $满足条件$l \geqslant {G_l}$或$\xi \leqslant {G_\zeta }$时停止迭代,其中${G_l}$为设定最大GAMP迭代次数,${G_\zeta }$为设定的容差门限。
     (3). 输出:$\bar g$的近似后验分布的估计结果$ q(\bar g) = \mathcal{C}\mathcal{N}(\hat \mu ,\hat \Sigma ) $,其均值和方差为
     $ \left\{ \begin{gathered} \hat {\boldsymbol{\mu}} = {{\hat {\boldsymbol{g}}}^{(l)}} \\ \hat {\boldsymbol{\Sigma}} = diag\left\{ {{\boldsymbol{\tau}} _g^{(l)}} \right\} \\ \end{gathered} \right. $                               (29)
    下载: 导出CSV

    表  2  各算法的单次迭代时间复杂度

    算法时间复杂度
    FN-MSBL$O\left( {\left( {\bar N - 1} \right)\left( {{M^2} + MT} \right) + {{\left( {\bar N - 1} \right)}^2}M + {M^3} + {M^2}T} \right)$
    FN-CVBI$ O\left( {\max \left\{ {{{\bar N}^3} + {{\bar N}^2}{M^2},\bar N{M^4} + {{\bar N}^2}{M^2} + {M^6}} \right\}} \right) $
    FN-GAMP-CVBI$O\left( {\bar N{M^2}} \right)$
    下载: 导出CSV

    表  3  各算法的平均计算时间

    算法LOFNSFN-MSBLFN-CVBIFN-GAMP-CVBI
    计算时间(秒)0.0353.6839.6910.074
    下载: 导出CSV

    表  4  各算法远近场混合源定位结果的统计对比

    算法 远场RMSE
    (度)
    近场RMSE
    (米)
    平均计算时间
    (秒)
    LOFNS 1.427 0.139 0.240
    FN-MSBL 1.374 0.046 3.784
    FN-CVBI 0.804 0.045 3.828
    FN-GAMP-CVBI 0.819 0.049 0.184
    下载: 导出CSV
  • [1] LIANG Guolong, CHEN Yu, WANG Jinjin, et al. Enhanced noise resilience in passive tone detection via broad-receptive field complex-valued convolutional neural networks[J]. The Journal of the Acoustical Society of America, 2024, 155(6): 3968–3982. doi: 10.1121/10.0026438.
    [2] DU Zhiyao, HAO Yu, QIU Longhao, et al. Sparsity-based direction-of-arrival estimation in the presence of near-field and far-field interferences for small-scale platform sonar arrays[J]. The Journal of the Acoustical Society of America, 2024, 156(5): 2989–3005. doi: 10.1121/10.0034240.
    [3] LEE J H, CHEN Y M, and YEH C C. A covariance approximation method for near-field direction-finding using a uniform linear array[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1293–1298. doi: 10.1109/78.382421.
    [4] LIANG Junli and LIU Ding. Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 108–120. doi: 10.1109/TSP.2009.2029723.
    [5] HE Jin, SWAMY M N S, and AHMAD M O. Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2066–2070. doi: 10.1109/TSP.2011.2180902.
    [6] ZUO Weiliang, XIN Jingmin, ZHENG Nanning, et al. Subspace-based localization of far-field and near-field signals without eigendecomposition[J]. IEEE Transactions on Signal Processing, 2018, 66(17): 4461–4476. doi: 10.1109/tsp.2018.2853124.
    [7] LI Chenmu, LIANG Guolong, QIU Longhao, et al. An efficient sparse method for direction-of-arrival estimation in the presence of strong interference[J]. The Journal of the Acoustical Society of America, 2023, 153(2): 1257–1271. doi: 10.1121/10.0017256.
    [8] WANG Bo, LIU Juanjuan, and SUN Xiaoying. Mixed sources localization based on sparse signal reconstruction[J]. IEEE Signal Processing Letters, 2012, 19(8): 487–490. doi: 10.1109/lsp.2012.2204248.
    [9] CHEN Mengya, LIN Wei, ZHAO Yongwei, et al. Gridless mixed-field sources localisation algorithm based on covariance matrix reconstruction[J]. Journal of Physics: Conference Series, 2024, 2849: 012117. doi: 10.1088/1742-6596/2849/1/012117.
    [10] QI Meibin, REN Weijie, and XIANG Houhong. Separation of mixed near-field and far-field sources and DOA estimation based on deep learning[C]. ICAIT 2023 - 2023 IEEE 15th International Conference on Advanced Infocomm Technology, Hefei, China, 2023: 226–233. doi: 10.1109/ICAIT59485.2023.10367306.
    [11] LIANG Guolong, ZHAO Benbin, and FAN Zhan. Direction of arrival estimation under near-field interference using matrix filter[J]. Journal of Computational Acoustics, 2015, 23(4): 1540007. doi: 10.1142/S0218396X1540007X.
    [12] HAWKES M and NEHORAI A. Acoustic vector-sensor correlations in ambient noise[J]. IEEE Journal of Oceanic Engineering, 2001, 26(3): 337–347. doi: 10.1109/48.946508.
    [13] 邱龙皓, 梁国龙, 王燕, 等. 稀疏贝叶斯学习远近场混合源定位方法[J]. 声学学报, 2018, 43(1): 1–11. doi: 10.15949/j.cnki.0371-0025.2018.01.001.

    QIU Longhao, LIANG Guolong, WANG Yan, et al. Mixed near-field and far-field sources localization method using sparse Bayesian learning[J]. Acta Acustica, 2018, 43(1): 1–11. doi: 10.15949/j.cnki.0371-0025.2018.01.001.
    [14] 刘章孟. 基于信号空域稀疏性的阵列处理理论与方法[D]. [博士论文], 国防科学技术大学, 2012.

    LIU Zhangmeng. Spatial sparsity-based theory and methodsof array signal processing[D]. [Ph. D. dissertation], National University of Defense Technology, 2012.
    [15] AL-SHOUKAIRI M, SCHNITER P, and RAO B D. A GAMP-based low complexity sparse bayesian learning algorithm[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 294–308. doi: 10.1109/TSP.2017.2764855.
    [16] LI Ninghui, ZHANG Xiaokuan, ZONG Binfeng, et al. An off-grid direction-of-arrival estimator based on sparse Bayesian learning with three-stage hierarchical Laplace priors[J]. Signal Processing, 2024, 218: 109371. doi: 10.1016/j.sigpro.2023.109371.
    [17] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236.
    [18] TZIKAS D G, LIKAS A C, and GALATSANOS N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131–146. doi: 10.1109/msp.2008.929620.
    [19] RANGAN S. Generalized approximate message passing for estimation with random linear mixing[C]. IEEE International Symposium on Information Theory, St. Petersburg, Russia, 2011: 2168–2172. doi: 10.1109/ISIT.2011.6033942.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  20
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-17
  • 修回日期:  2025-11-03
  • 录用日期:  2025-11-03
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回