高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面辅助的空间调制系统的高效盲检测聚类算法研究

张丽娟 沙莎 钟华乾

张丽娟, 沙莎, 钟华乾. 智能反射面辅助的空间调制系统的高效盲检测聚类算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250162
引用本文: 张丽娟, 沙莎, 钟华乾. 智能反射面辅助的空间调制系统的高效盲检测聚类算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT250162
ZHANG Lijuan, SHA Sha, ZHONG Huaqian. Efficient Blind Detection Clustering Algorithm for Reconfigurable Intelligent Surface-aided Spatial Modulation Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250162
Citation: ZHANG Lijuan, SHA Sha, ZHONG Huaqian. Efficient Blind Detection Clustering Algorithm for Reconfigurable Intelligent Surface-aided Spatial Modulation Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250162

智能反射面辅助的空间调制系统的高效盲检测聚类算法研究

doi: 10.11999/JEIT250162 cstr: 32379.14.JEIT250162
基金项目: 浙江省自然科学基金(LQ23F010004),浙江省教育厅一般科研项目(Y202455182)
详细信息
    作者简介:

    张丽娟:女,讲师,博士,研究方向为信号检测、智能反射面等

    沙莎:女,硕士生,研究方向为智能反射面检测算法、索引调制等

    钟华乾:男,本科,研究方向为智能反射面检测算法、索引调制等

    通讯作者:

    张丽娟 zhanglijuan@zust.edu.cn

  • 中图分类号: TN929.5

Efficient Blind Detection Clustering Algorithm for Reconfigurable Intelligent Surface-aided Spatial Modulation Systems

Funds: ZheJiang Provincial Natural Science Foundation (LQ23F010004), The Scientiffc Research Project funded by Zhejiang Provincial Department of Education (Y202455182)
  • 摘要: 针对智能反射面(RIS)辅助空间调制(SM)系统(RIS-SM)在未知信道状态信息(CSI)条件下的信号检测问题,该文提出一种新型无监督聚类检测算法。考虑到RIS的无源特性及传统检测方法对完美CSI的依赖难以满足实际部署需求,将RIS-SM系统的盲检测任务转化为聚类问题,并在K-means算法基础上引入信道统计特性指导的初始化机制。该方法有效利用RIS-SM系统中等效信道的幅度与相位分布特征,在不依赖任何先验CSI的条件下,实现高效且低复杂度的信号检测。仿真结果验证了所提算法在多种系统配置下均可逼近最优最大似然(ML)性能,充分展示了其在理论研究与实际应用中的可行性与优势。
  • 图  1  RIS-RSM系统示意图

    图  2  RIS-RSM系统中原始接收信号及其“差”的聚类结果

    图  3  RIS-RSM系统中原始接收信号及其“好”的聚类结果

    图  4  QPSK调制方式下的各种检测算法的误码率(BER)

    图  5  8QAM调制方式下的各种检测算法的误码率(BER)

    图  6  不同聚类检测算法在各信噪比下的平均迭代次数

    表  1  不同检测算法的复杂度比较

    检测算法 计算复杂度 计算值
    最大似然检测算法(ML) $ O(N_{\rm r}^2(M + N)L) $ $ 4.22 \times {10^5} $
    贪婪检测算法(GD) $ O(({N_{\rm r}} + M)L) $ $ 1.60 \times {10^3} $
    传统KMC检测算法 $ O({N_{\rm r}}M{T_1}L) $ $ 9.60 \times {10^3} $
    KMC($ P $) $ O(P{N_{\rm r}}M{T_1}L) $ $ 9.60 \times {10^5} $
    改进的KMC检测算法(IKMC) $ O({L^2} + L{N_{\rm r}}M{T_2}) $ $ 4.32 \times {10^4} $
    约束聚类盲检测算法(CCBD) $ O(L{N}_{\rm r}M{T}_{3}) $ $ 6.40 \times {10^3} $
    Kmeans++算法(KMC++) $ O(L{N}_{\rm r}M{T}_{4}) $ $ 3.20 \times {10^3} $
    所提出的检测算法(Proposed) $ O(L{N_{\rm r}}M{T_5}) $ $ 3.20 \times {10^3} $
    下载: 导出CSV
  • [1] CHATAUT R, NANKYA M, and AKL R. 6G networks and the AI revolution–exploring technologies, applications, and emerging challenges[J]. Sensors, 2024, 24(6): 1888. doi: 10.3390/s24061888.
    [2] BANAFAA M, SHAYEA I, DIN J, et al. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities[J]. Alexandria Engineering Journal, 2023, 64: 245–274. doi: 10.1016/j.aej.2022.08.017.
    [3] BASAR E, ALEXANDROPOULOS G C, LIU Yuanwei, et al. Reconfigurable intelligent surfaces for 6G: Emerging hardware architectures, applications, and open challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(3): 27–47. doi: 10.1109/MVT.2024.3415570.
    [4] MU Xidong, XU Jiaqi, LIU Yuanwei, et al. Reconfigurable intelligent surface-aided near-field communications for 6G: Opportunities and challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(1): 65–74. doi: 10.1109/MVT.2023.3345608.
    [5] OZDEN B A, COGEN F, AYDIN E, et al. A novel reconfigurable intelligent surface-supported code index modulation-based receive spatial modulation system[C]. 2024 IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10571099.
    [6] MANDLOI M, GURJAR D, PATTANAYAK P, et al. 5G and Beyond Wireless Systems[M]. Singapore, Singapore: Springer, 2021. doi: 10.1007/978-981-15-6390-4.
    [7] 张晓茜, 徐勇军, 吴翠先, 等. 智能反射面增强的全双工环境反向散射通信系统波束成形算法[J]. 电子与信息学报, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.

    ZHANG Xiaoxi, XU Yongjun, WU Cuixian, et al. Beamforming design for reconfigurable intelligent surface enhanced full-duplex ambient backscatter communication networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.
    [8] 陈平平, 张云馨, 杜伟庆. 可重构智能表面辅助的联合空间和码索引调制通信系统[J]. 电子与信息学报, 2025, 47(4): 439–488. doi: 10.11999/JEIT240987.

    CHEN Pingping, ZHANG Yunxin, and DU Weiqing. Reconfigurable intelligent surface-aided joint spatial and code index modulation communication system[J]. Journal of Electronics & Information Technology, 2025, 47(4): 439–488. doi: 10.11999/JEIT240987.
    [9] 徐勇军, 符加劲, 黄琼, 等. 智能反射面辅助的多天线通信系统鲁棒安全资源分配算法[J]. 电子与信息学报, 2024, 46(1): 165–174. doi: 10.11999/JEIT221554.

    XU Yongjun, FU Jiajin, HUANG Qiong, et al. Robust secure resource allocation algorithm for intelligent reflecting surface-assisted multi-antenna communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(1): 165–174. doi: 10.11999/JEIT221554.
    [10] REN Zhangbo, HUANG Kaizhi, JIANG Wenyu, et al. Reconfigurable intelligent surface enhanced MISO-OFDM anti-jamming communications: Joint active and passive precoding design[J]. IET Communications, 2023, 17(6): 712–725. doi: 10.1049/cmu2.12575.
    [11] AN Jiancheng, XU Chao, NG D W K, et al. Adjustable-delay RIS is capable of improving OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9927–9942. doi: 10.1109/TVT.2024.3362953.
    [12] SUI Zeping, NGO H Q, VAN CHIEN T, et al. RIS-assisted cell-free massive MIMO relying on reflection pattern modulation[J]. IEEE Transactions on Communications, 2025, 73(2): 968–982. doi: 10.1109/TCOMM.2024.3446589.
    [13] MENG Shengguo, TANG Wankai, CHEN Weicong, et al. Rank optimization for MIMO channel with RIS: Simulation and measurement[J]. IEEE Wireless Communications Letters, 2024, 13(2): 437–441. doi: 10.1109/LWC.2023.3331489.
    [14] YUE Xinwei, SONG Meiqi, OUYANG Chongjun, et al. Exploiting active RIS in NOMA networks with hardware impairments[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8207–8221. doi: 10.1109/TVT.2024.3352813.
    [15] ZHANG Weilin, WANG Lingyi, MAO Hangtao, et al. Throughput maximization for irregular reconfigurable intelligent surface assisted NOMA systems[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 111. doi: 10.1186/s13634-023-01076-1.
    [16] LI Xuehua, LIAN Xuanhao, YUE Xinwei, et al. Performance analysis of double reconfigurable intelligent surfaces assisted NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 18732–18747. doi: 10.1109/TVT.2024.3435033.
    [17] WEN Miaowen, ZHENG Beixiong, KIM K J, et al. A survey on spatial modulation in emerging wireless systems: Research progresses and applications[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(9): 1949–1972. doi: 10.1109/JSAC.2019.2929453.
    [18] OBADHA J A, AKUON P O, and ODUOL V K. Generalized antenna sequence spatial modulation (GASSM): A novel framework for enhanced PHY layer security and energy efficiency[J]. Journal of Electrical Systems and Information Technology, 2024, 11(1): 9. doi: 10.1186/s43067-023-00133-x.
    [19] FU Dan and YIN Xiaogui. OFDM with double spatial modulation for improving the reliability of wireless communication[J]. Journal of Physics: Conference Series, 2021, 2033: 012018. doi: 10.1088/1742-6596/2033/1/012018.
    [20] ZHANG Chaorong, PENG Yuyang, LI Jun, et al. An IRS-aided GSSK scheme for wireless communication system[J]. IEEE Communications Letters, 2022, 26(6): 1398–1402. doi: 10.1109/LCOMM.2022.3159818.
    [21] BASAR E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G[J]. IEEE Transactions on Communications, 2020, 68(5): 3187–3196. doi: 10.1109/TCOMM.2020.2971486.
    [22] MA Teng, XIAO Yue, LEI Xia, et al. Large intelligent surface assisted wireless communications with spatial modulation and antenna selection[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2562–2574. doi: 10.1109/JSAC.2020.3007044.
    [23] LIU Jiang and DI RENZO M. Data-driven and model-driven deep learning detection for RIS-aided spatial modulation[C]. 2021 IEEE 4th 5G World Forum, Montreal, Canada, 2021: 88–92. doi: 10.1109/5GWF52925.2021.00023.
    [24] YANG Wanning, LI Ming, and LIU Qian. A novel anchor-assisted channel estimation for RIS-aided multiuser communication systems[J]. IEEE Communications Letters, 2022, 26(11): 2740–2744. doi: 10.1109/LCOMM.2022.3179298.
    [25] XIE Wenwu, XIAO Jian, ZHU Peng, et al. Multi-task learning-based channel estimation for RIS assisted multi-user communication systems[J]. IEEE Communications Letters, 2022, 26(3): 577–581. doi: 10.1109/LCOMM.2021.3138082.
    [26] CHU Hongyun, PAN Xue, JIANG Jing, et al. Adaptive and robust channel estimation for IRS-aided millimeter-wave communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9411–9423. doi: 10.1109/TVT.2024.3385776.
    [27] YOU Longfei, YANG Ping, XIAO Yue, et al. Blind detection for spatial modulation systems based on clustering[J]. IEEE Communications Letters, 2017, 21(11): 2392–2395. doi: 10.1109/LCOMM.2017.2734648.
    [28] ARTHUR D and VASSILVITSKII S. k-means++: The advantages of careful seeding[C]. The Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007: 1027–1035.
    [29] ZHANG Lijuan and JIN Minglu. A constrained clustering-based blind detector for spatial modulation[J]. IEEE Communications Letters, 2019, 23(7): 1170–1173. doi: 10.1109/LCOMM.2019.2915304.
    [30] ABUTHINIEN M, CHEN Sheng, WOLFGANG A, et al. Joint maximum likelihood channel estimation and data detection for MIMO systems[C]. 2007 IEEE International Conference on Communications, Glasgow, UK, 2007: 5354–5358. doi: 10.1109/ICC.2007.886.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  23
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-17
  • 修回日期:  2025-08-02
  • 网络出版日期:  2025-08-11

目录

    /

    返回文章
    返回