高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HNN4RP:基于异构图神经网络的以太坊地毯拉动骗局检测

李晨晨 金海 吴敏睿 肖江

李晨晨, 金海, 吴敏睿, 肖江. HNN4RP:基于异构图神经网络的以太坊地毯拉动骗局检测[J]. 电子与信息学报. doi: 10.11999/JEIT250160
引用本文: 李晨晨, 金海, 吴敏睿, 肖江. HNN4RP:基于异构图神经网络的以太坊地毯拉动骗局检测[J]. 电子与信息学报. doi: 10.11999/JEIT250160
LI Chenchen, JIN Hai, WU Minrui, XIAO Jiang. HNN4RP: Heterogeneous Graph Neural Network for Rug Pull Detection on Ethereum[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250160
Citation: LI Chenchen, JIN Hai, WU Minrui, XIAO Jiang. HNN4RP: Heterogeneous Graph Neural Network for Rug Pull Detection on Ethereum[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250160

HNN4RP:基于异构图神经网络的以太坊地毯拉动骗局检测

doi: 10.11999/JEIT250160 cstr: 32379.14.JEIT250160
基金项目: 国家自然科学基金(62472185)
详细信息
    作者简介:

    李晨晨:男,博士生,研究方向为区块链和去中心化金融

    金海:男,博士,教授,博士生导师,研究方向为分布式系统

    吴敏睿:女,博士生,研究方向为区块链和去中心化金融

    肖江:女,博士,教授,博士生导师,研究方向为区块链、分布式系统

    通讯作者:

    肖江 jiangxiao@hust.edu.cn

  • 11)https://www.slowmist.com/report/2023-Blockchain-Security-and-AML-Annual-Report(CN).pdf
  • 中图分类号: TN-9; TP311

HNN4RP: Heterogeneous Graph Neural Network for Rug Pull Detection on Ethereum

Funds: The National Natural Science Foundation of China (62472185)
  • 摘要: 去中心化金融(DeFi)依托区块链技术,实现了金融交易和服务的去中心化,重塑了传统金融体系中的信任机制,成为近年来学术界和工业界的研究热点。然而,DeFi的开放性、匿名性和无需许可的特征,虽然赋予用户更大的灵活性和自主权,但也带来了严峻的监管挑战,导致金融欺诈行为频发,尤其是地毯拉动骗局(Rug Pull)屡见不鲜。针对这一问题,该文提出一种基于异构图神经网络的地毯拉动骗局早期检测算法(HNN4RP),用于识别和预警DeFi生态中的地毯拉动骗局。具体而言,将以太坊交易数据建模为异构图,并结合重启随机游走采样策略、异构节点特征提取技术和基于双向长短期记忆网络的时序特征融合方法,以有效应对数据分布不均、异构节点特征提取困难以及时序信息缺失等3大关键挑战。实验结果表明,通过在真实的以太坊数据集上,HNN4RP取得了96%的精确率和94%的召回率,相较于基线方法精确率提升了12%,显著优于传统检测方法,并能够提供及时的欺诈预警。此外,消融实验和敏感性分析验证了模型的鲁棒性。
  • 图  1  以太坊交易图建模

    图  2  HNN4RP算法框架图

    图  3  不同特征对于地毯拉动骗局检测的影响

    图  4  邻居节点个数对于地毯拉动骗局检测的影响

    图  5  嵌入维度对于地毯拉动骗局检测的影响

    表  1  不同类型账户数据对比

    评估指标普通账户合约账户
    平均交易额0.2316.34
    交易金额中位数0.050.52
    交易金额标准差0.315.43
    平均余额0.123.48
    余额中位数0.010.50
    平均入度5.00348.20
    平均出度6.10503.10
    下载: 导出CSV

    表  2  不同算法针对地毯拉动骗局的检测效果对比

    算法 数据集D1 数据集D2 数据集D3
    精确率 召回率 F1 精确率 召回率 F1 精确率 召回率 F1
    SVM 0.684 0.672 0.678 0.653 0.600 0.449 0.596 0.623 0.609
    LightGBM 0.702 0.743 0.722 0.738 0.700 0.718 0.679 0.655 0.667
    DeepWalk 0.581 0.550 0.565 0.612 0.594 0.603 0.630 0.624 0.627
    Node2Vec 0.601 0.570 0.585 0.683 0.713 0.698 0.726 0.700 0.747
    GIN 0.612 0.840 0.708 0.705 0.890 0.787 0.712 0.912 0.800
    GAT 0.600 0.812 0,690 0.715 0.878 0.788 0.743 0.838 0.788
    GraphSAGE 0.796 0.850 0.822 0.824 0.873 0.848 0.830 0.898 0.863
    SOTA 0.763 0.742 0.752 0.782 0.766 0.773 0.795 0.792 0.793
    GTN 0.835 0.872 0.853 0.933 0.914 0.923 0.938 0.910 0.923
    HNN4RP 0.830 0.860 0.845 0.960 0.940 0.950 0.940 0.902 0.910
    下载: 导出CSV

    表  3  不同噪声水平下HNN4RP的检测结果

    噪声类型 强度 精确率 F1
    无噪声 - 0.960 0.950
    特征噪声 $ \sigma $=0.05 0.926 0.907
    特征噪声 $ \sigma $=0.10 0.912 0.896
    特征噪声 $ \sigma $=0.20 0.887 0.862
    标签噪声 $ \eta $=5% 0.905 0.898
    标签噪声 $ \eta $=10% 0.874 0.886
    标签噪声 $ \eta $=15% 0.853 0.861
    下载: 导出CSV

    表  4  不同时间窗口HNN4RP的检测结果

    时间窗口(h) 精确率 召回率 F1
    4 0.829 0.893 0.860
    12 0.872 0.910 0.890
    24 0.923 0.912 0.917
    下载: 导出CSV
  • [1] Ethereum browser[EB/OL]. https://etherscan.io/chart/address, 2023.
    [2] JIN Hai and XIAO Jiang. Towards trustworthy blockchain systems in the era of "Internet of value": Development, challenges, and future trends[J]. Science China Information Sciences, 2022, 65(5): 153101. doi: 10.1007/s11432-020-3183-0.
    [3] BARTOLETTI M, CARTA S, CIMOLI T, et al. Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact[J]. Future Generation Computer Systems, 2020, 102: 259–277. doi: 10.1016/j.future.2019.08.014.
    [4] BOSHMAF Y, ELVITIGALA C, AL JAWAHERI H, et al. Investigating MMM Ponzi scheme on bitcoin[C]. The 15th ACM Asia Conference on Computer and Communications Security (ASIA CCS’20), Taipei, China, 2020: 519–530. doi: 10.1145/3320269.3384719.
    [5] CHEN Weili, GUO Xiongfeng, CHEN Zhiguang, et al. Phishing scam detection on ethereum: Towards financial security for blockchain ecosystem[C]. The 29th International Joint Conference on Artificial Intelligence (IJCAI’20), Yokohama, Japan, 2021: 621.
    [6] ZHANG Shijie, CHENG Ru, LIU Xinpeng, et al. Seer: Accelerating blockchain transaction execution by fine-grained branch prediction[J]. Proceedings of the VLDB Endowment, 2024, 18(3): 822–835. doi: 10.14778/3712221.3712245.
    [7] ZHANG Shijie, XIAO Jiang, WU Enping, et al. MorphDAG: A workload-aware elastic DAG-based blockchain[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(10): 5249–5264. doi: 10.1109/TKDE.2024.3382743.
    [8] CERNERA F, LA MORGIA M, MEI A, et al. Token spammers, rug pulls, and sniper bots: An analysis of the ecosystem of tokens in Ethereum and in the Binance smart chain (BNB)[C]. The 32nd USENIX Conference on Security Symposium (USENIX Security 2023), Anaheim, USA, 2023: 188.
    [9] 陈锦富, 冯乔伟, 蔡赛华, 等. 基于形式化方法的区块链系统漏洞检测模型[J]. 软件学报, 2024, 35(9): 4193–4217. doi: 10.13328/j.cnki.jos.007133.

    CHEN Jinfu, FENG Qiaowei, CAI Saihua, et al. Vulnerability detection model for blockchain systems based on formal method[J]. Journal of Software, 2024, 35(9): 4193–4217. doi: 10.13328/j.cnki.jos.007133.
    [10] 王利朋, 关志, 李青山, 等. 区块链数据安全服务综述[J]. 软件学报, 2023, 34(1): 1–32. doi: 10.13328/j.cnki.jos.006402.

    WANG Lipeng, GUAN Zhi, LI Qingshan, et al. Survey on blockchain-based security services[J]. Journal of Software, 2023, 34(1): 1–32. doi: 10.13328/j.cnki.jos.006402.
    [11] 郭加树, 王琪, 李择亚, 等. 基于双层孪生神经网络的区块链智能合约分类方法[J]. 电子与信息学报, 2024, 46(3): 1060–1068. doi: 10.11999/JEIT230185.

    GUO Jiashu, WANG Qi, LI Zeya, et al. Blockchain smart contract classification method based on double siamese neural network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1060–1068. doi: 10.11999/JEIT230185.
    [12] 徐恪, 凌思通, 李琦, 等. 基于区块链的网络安全体系结构与关键技术研究进展[J]. 计算机学报, 2021, 44(1): 55–83. doi: 10.11897/SP.J.1016.2021.00055.

    XU Ke, LING Sitong, LI Qi, et al. Research progress of network security architecture and key technologies based on blockchain[J]. Chinese Journal of Computers, 2021, 44(1): 55–83. doi: 10.11897/SP.J.1016.2021.00055.
    [13] CHEN Huashan, PENDLETON M, NJILLA L, et al. A survey on ethereum systems security: Vulnerabilities, attacks, and defenses[J]. ACM Computing Surveys, 2020, 53(3): 67. doi: 10.1145/3391195.
    [14] WU Jiajing, LIU Jieli, ZHAO Yijing, et al. Analysis of cryptocurrency transactions from a network perspective: An overview[J]. Journal of Network and Computer Applications, 2021, 190: 103139. doi: 10.1016/j.jnca.2021.103139.
    [15] ZHANG Peiyun, LI Chenxi, ZHOU Mengchu, et al. Transaction transmission model for blockchain channels based on non-cooperative games[J]. Science China Information Sciences, 2023, 66(1): 112105. doi: 10.1007/s11432-021-3362-9.
    [16] TOYODA K, OHTSUKI T, and MATHIOPOULOS P T. Identification of high yielding investment programs in bitcoin via transactions pattern analysis[C]. 2017 IEEE Global Communications Conference (GLOBECOM 2017), Singapore, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254420.
    [17] CHEN Weili, ZHENG Zibin, CUI Jiahui, et al. Detecting ponzi schemes on ethereum: Towards healthier blockchain technology[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 1409–1418. doi: 10.1145/3178876.3186046.
    [18] WU Jiajing, YUAN Qi, LIN Dan, et al. Who are the phishers? Phishing scam detection on Ethereum via network embedding[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1156–1166. doi: 10.1109/TSMC.2020.3016821.
    [19] NEUDECKER T and HARTENSTEIN H. Could network information facilitate address clustering in bitcoin?[C]. FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA on Financial Cryptography and Data Security, Sliema, Malta, 2017: 155–169. doi: 10.1007/978-3-319-70278-0_9.
    [20] SPAGNUOLO M, MAGGI F, and ZANERO S. BitIodine: Extracting intelligence from the bitcoin network[C]. The 18th International Conference on Financial Cryptography and Data Security, Christ Church, Barbados, 2014: 457–468. doi: 10.1007/978-3-662-45472-5_29.
    [21] OBER M, KATZENBEISSER S, and HAMACHER K. Structure and anonymity of the bitcoin transaction graph[J]. Future Internet, 2013, 5(2): 237–250. doi: 10.3390/fi5020237.
    [22] RON D and SHAMIR A. How did dread pirate roberts acquire and protect his bitcoin wealth?[C]. The 18th International Conference on Financial Cryptography and Data Security Workshops (FC’14), Christ Church, Barbados, 2014: 3–15. doi: 10.1007/978-3-662-44774-1_1.
    [23] CHEN Weili, WU Jun, ZHENG Zibin, et al. Market manipulation of bitcoin: Evidence from mining the Mt. Gox transaction network[C]. The 38th IEEE Conference on Computer Communications (INFOCOM’2019), Paris, France, 2019: 964–972. doi: 10.1109/INFOCOM.2019.8737364.
    [24] LIN Dan, WU Jiajing, YUAN Qi, et al. Modeling and understanding ethereum transaction records via a complex network approach[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(11): 2737–2741. doi: 10.1109/TCSII.2020.2968376.
    [25] LIN Dan, WU Jiajing, YUAN Qi, et al. T-EDGE: Temporal WEighted MultiDiGraph embedding for ethereum transaction network analysis[J]. Frontiers in Physics, 2020, 8: 204. doi: 10.3389/fphy.2020.00204.
    [26] SHEN Jie, ZHOU Jiajun, XIE Yunyi, et al. Identity inference on blockchain using graph neural network[C]. Tthe 3rd International Conference on Blockchain and Trustworthy Systems, Guangzhou, China, 2021: 3–17. doi: 10.1007/978-981-16-7993-3_1.
    [27] LI Sijia, GOU Gaopeng, LIU Chang, et al. TTAGN: Temporal transaction aggregation graph network for ethereum phishing scams detection[C]. The ACM Web Conference 2022 (WWW’22), Lyon, France, 2022: 661–669. doi: 10.1145/3485447.3512226.
    [28] ZHOU Jiajun, HU Chenkai, CHI Jianlei, et al. Behavior-aware account de-anonymization on ethereum interaction graph[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3433–3448. doi: 10.1109/TIFS.2022.3208471.
    [29] MAKRIDIS C A, FRÖWIS M, SRIDHAR K, et al. The rise of decentralized cryptocurrency exchanges: Evaluating the role of airdrops and governance tokens[J]. Journal of Corporate Finance, 2023, 79: 102358. doi: 10.1016/j.jcorpfin.2023.102358.
    [30] WANG Chaofan, DAI Xiaohai, XIAO Jiang, et al. Demystifying ethereum account diversity: Observations, models and analysis[J]. Frontiers of Computer Science, 2022, 16(4): 164505. doi: 10.1007/s11704-021-0221-3.
    [31] JIN Hai, LI Chenchen, XIAO Jiang, et al. Detecting arbitrage on ethereum through feature fusion and positive-unlabeled learning[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3660–3671. doi: 10.1109/JSAC.2022.3213335.
    [32] HU Jiahao, CAO Mingpei, ZHANG Xizhe, et al. Temporal weighted heterogeneous multigraph embedding for ethereum phishing scams detection[C]. The 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD’23), Rio de Janeiro, Brazil, 2023: 1208–1213. doi: 10.1109/CSCWD57460.2023.10152679.
    [33] TAN Runnan, TAN Qingfeng, ZHANG Peng, et al. Graph neural network for ethereum fraud detection[C]. 2021 IEEE International Conference on Big Knowledge (ICBK'21), Auckland, New Zealand, 2021: 78–85. doi: 10.1109/ICKG52313.2021.00020.
    [34] ZHOU Chenyu, CHEN Hongzhou, WU Hao, et al. ARTEMIS: Detecting airdrop hunters in NFT markets with a graph learning system[C]. The ACM Web Conference 2024 (WWW’24), Singapore, Singapore, 2024: 1824–1834. doi: 10.1145/3589334.3645597.
    [35] XIA Pengcheng, WANG Haoyu, GAO Bingyu, et al. Trade or Trick?: Detecting and characterizing scam tokens on uniswap decentralized exchange[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2021, 5(3): 39. doi: 10.1145/3491051.
    [36] MAZORRA B, ADAN V, and DAZA V. Do not rug on me: Leveraging machine learning techniques for automated scam detection[J]. Mathematics, 2022, 10(6): 949. doi: 10.3390/math10060949.
    [37] NGUYEN M H, HUYNH P D, DAU S H, et al. Rug-pull malicious token detection on blockchain using supervised learning with feature engineering[C]. 2023 Australasian Computer Science Week (ACSW’23), Melbourne, Australia, 2023: 72–81. doi: 10.1145/3579375.3579385.
    [38] VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988–999. doi: 10.1109/72.788640.
    [39] KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]. The 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, USA, 2017: 3149–3157.
    [40] PEROZZI B, AL-RFOU R, and SKIENA S. DeepWalk: Online learning of social representations[C]. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14), New York, USA, 2014: 701–710. doi: 10.1145/2623330.2623732.
    [41] GROVER A and LESKOVEC J. node2vec: Scalable feature learning for networks[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16), San Francisco, USA, 2016: 855–864. doi: 10.1145/2939672.2939754.
    [42] XU Keyulu, HU Weihua, LESKOVEC J, et al. How powerful are graph neural networks?[C]. The 7th International Conference on Learning Representations (ICLR’19), New Orleans, USA, 2019.
    [43] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]. The 6th International Conference on Learning Representations (ICLR’18), Vancouver, Canada, 2018: 10–48550.
    [44] HAMILTON W L, YING R, and LESKOVEC J. Inductive representation learning on large graphs[C]. The 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, USA, 2017: 1025–1035.
    [45] YUN S, JEONG M, KIM R, et al. Graph transfomer networks[C]. The 33rd International Conference on Neural Information Processing Systems (NeurIPS’19), Vancouver, Canada, 2019: 1073.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  111
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-13
  • 修回日期:  2025-07-28
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回