高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合低秩张量分解与乘积图建模的高光谱图像去噪算法

马谋 蔡明娇 沈雨 周芳 蒋俊正

马谋, 蔡明娇, 沈雨, 周芳, 蒋俊正. 融合低秩张量分解与乘积图建模的高光谱图像去噪算法[J]. 电子与信息学报. doi: 10.11999/JEIT250130
引用本文: 马谋, 蔡明娇, 沈雨, 周芳, 蒋俊正. 融合低秩张量分解与乘积图建模的高光谱图像去噪算法[J]. 电子与信息学报. doi: 10.11999/JEIT250130
MA Mou, CAI Mingjiao, SHEN Yu, ZHOU Fang, JIANG Junzheng. Hyperspectral Image Denoising Algorithm via Joint Low-Rank Tensor Decomposition and Product Graph Modeling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250130
Citation: MA Mou, CAI Mingjiao, SHEN Yu, ZHOU Fang, JIANG Junzheng. Hyperspectral Image Denoising Algorithm via Joint Low-Rank Tensor Decomposition and Product Graph Modeling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250130

融合低秩张量分解与乘积图建模的高光谱图像去噪算法

doi: 10.11999/JEIT250130 cstr: 32379.14.JEIT250130
基金项目: 国家自然科学基金(62171146, 62261014),广西自然科学杰出青年基金(2021GXNSFFA220004),浙江省自然科学基金杭州区域创新发展联合基金(LHZSZ25F010003)
详细信息
    作者简介:

    马谋:男,博士生,研究方向为图信号处理理论与算法

    蔡明娇:女,硕士生,研究方向为图信号处理理论与算法

    沈雨:女,硕士生,研究方向为高光谱图像去噪算法

    周芳:女,博士,副教授,研究方向为图信号处理理论与算法

    蒋俊正:男,博士,教授,博士生导师,研究方向为图信号处理理论与应用(智能干扰感知、高光谱图像重建)

    通讯作者:

    周芳 zhoufang1026@cjlu.edu.cn

  • 中图分类号: TN911.72

Hyperspectral Image Denoising Algorithm via Joint Low-Rank Tensor Decomposition and Product Graph Modeling

Funds: The National Natural Science Foundation of China (62171146, 62261014), Guangxi Natural Science Foundation for Distinguished Young Scholar (2021GXNSFFA220004), Hangzhou Joint Fund of the Zhejiang Provincial Natural Science Foundation of China (LHZSZ25F010003)
  • 摘要: 针对高光谱图像(HSI)由于受采集、传输等过程的客观因素影响而存在各种噪声的问题,该文提出一种基于低秩张量分解与克罗内克积乘积图拉普拉斯正则化(LRTDKGLR)的HSI去噪算法。首先,该算法基于HSI的空间和光谱特性,利用图信号处理(GSP)理论分别构建空间图和光谱图,并通过克罗内克积将二者结合为乘积图,用于刻画HSI数据的空间-光谱联合关联特性。随后,通过Tucker分解提取空间和光谱维度的联合低维表示,进一步挖掘HSI图像的结构特征。此外,采用乘积图模型对HSI数据在空间和光谱维度上的分段平滑特性进行建模,从而增强空间-光谱维度间的关联性。随后,将HSI去噪问题转化为一个包含低秩张量分解和克罗内克积的图拉普拉斯正则化(KGLR)的优化问题,并通过增广拉格朗日乘子法(ALM)高效求解。模拟数据和真实数据实验结果表明,该文所提出的LRTDKGLR方法在去噪性能上优于现有方法,验证了其在HSI去噪中的有效性。
  • 图  1  乘积图的图模型

    图  2  不同算法在情况3下对模拟Washington DC Mall数据集的去噪效果可视化对比

    图  3  不同算法在情况3下对于模拟Washington DC Mall数据集各波段的PSNR和SSIM值对比

    图  4  不同算法对urban数据集第102波段的去噪效果可视化对比

    图  5  不同算法对Indian Pines数据集第217波段的去噪效果可视化对比

    图  6  去噪性能与参数$\alpha $的灵敏度分析

    图  7  去噪性能与参数$\beta $的灵敏度分析

    图  8  去噪性能与秩的灵敏度分析

    图  9  收敛性分析

    1  LRTDKGLR算法

     输入:含噪声的HSI数据$ \mathcal{Y} $,秩$ {\text{Rank}} = 5 $, $ \alpha = 0.007 $, $ \beta = 0.13 $。
     输出:干净的HSI数据$ {\mathcal{H}^{(k + 1)}} $。
     初始化:$ \mathcal{H} = \mathcal{X} = \mathcal{S} = \mathcal{N} = 0 $,$ {\mathcal{C}_1} = {\mathcal{C}_2} = 0 $,克罗内克积乘积图拉普拉斯矩阵${{\boldsymbol{L}}_{\text{K}}}$,惩罚参数$ \rho = {10^{ - 2}} $及其最大值$ {\rho _{\max }} = {10^6} $,惩罚参数
     的增长系数$ \gamma = 1.5 $,迭代次数$ k = 0 $,误差因子$ {\varepsilon _1} = {e^{ - 6}},{\varepsilon _2} = {e^{ - 6}} $。
     迭代:
      步骤1 提取HSI频带,构造乘积图,得到图拉普拉斯矩阵;
      步骤2 通过式(11)更新$ {\mathcal{H}^{(k + 1)}} $、式(17)更新$ {{\boldsymbol{X}}^{(k + 1)}} $并重构$ {\mathcal{X}^{(k + 1)}} $、式(20)更新$ {\mathcal{S}^{(k + 1)}} $、式(21)更新$ {\mathcal{N}^{(k + 1)}} $、式(23)更新$ {\mathcal{C}}_{_1}^{(k + 1)} $、
      式(24)更新$ {\mathcal{C}}_2^{(k + 1)} $;
      步骤3 更新惩罚参数$ \rho = \min (\gamma \rho ,{\rho _{\max }}) $;
      步骤4 检查收敛条件:若满足$ {{\left\| {\mathcal{Y} - {\mathcal{H}^{(k + 1)}} - {\mathcal{S}^{(k + 1)}} - \mathcal{N}} \right\|_{\text{F}}^2} / {\left\| \mathcal{Y} \right\|_{\text{F}}^2}} \le {\varepsilon _1} $且$ \left\| {{\mathcal{X}^{(k + 1)}} - {\mathcal{H}^{(k + 1)}}} \right\|_{\text{F}}^2 \le {\varepsilon _2} $,则结束迭代,否则重复步
      骤2。
    下载: 导出CSV

    表  1  不同算法在不同情况下对模拟Washington DC Mall数据集的去噪效果对比

    指标 LR
    MR
    LR
    TV
    LRT
    DTV
    GLF TSL
    RLN
    NG
    meet
    LRTD
    GTV
    LRTD
    KGLR
    情况1:G=0.075, P=0.15
    MPSNR (dB) 32.65 34.23 33.39 23.93 24.02 24.00 34.62 35.01
    MSSIM 0.924 4 0.930 7 0.924 9 0.794 4 0.763 7 0.794 7 0.944 3 0.948 1
    ERGAS 96.69 128.29 87.30 281.08 281.70 284.09 78.00 97.28
    情况2:G=0.1, P=0.2
    MPSNR (dB) 30.32 31.84 31.60 21.44 21.52 21.48 32.49 33.44
    MSSIM 0.885 5 0.900 6 0.891 4 0.719 8 0.686 8 0.709 7 0.915 0 0.927 4
    ERGAS 126.81 164.82 107.31 378.00 378.35 383.59 99.06 111.74
    情况3:高斯噪声+脉冲噪声
    MPSNR (dB) 30.69 33.04 32.03 25.50 25.49 25.07 32.93 33.89
    MSSIM 0.889 4 0.911 3 0.899 1 0.823 4 0.792 2 0.810 8 0.928 1 0.936 0
    ERGAS 126.77 189.94 103.64 267.37 268.55 274.91 94.52 84.94
    情况4:高斯噪声+脉冲噪声+死线噪声
    MPSNR (dB) 30.54 32.95 31.97 25.48 25.51 25.09 32.88 33.83
    MSSIM 0.888 2 0.911 3 0.898 3 0.821 2 0.790 8 0.807 3 0.926 2 0.936 0
    ERGAS 128.03 195.97 104.40 267.58 268.31 274.78 95.09 85.07
    下载: 导出CSV

    表  2  算法运行时间对比(s)

    算法LR
    MR
    LR
    TV
    LRT
    DTV
    GLFTSL
    RLN
    NG
    meet
    LRTD
    GTV
    LRTD
    KGLR
    运行时间31.9142.6154.6448.224.647.2278.569.1
    下载: 导出CSV

    表  3  在Washington DC Mall数据集上,对两种最新深度学习方法进行了定量对比分析

    噪声水平
    (方差)
    指标 HSID-CNN[5] HSI-SDeCNN[20] LRTDKGLR
    (dB)
    $ {\sigma _n} = 25 $ PSNR 33.050 33.444 34.170 (dB)
    SSIM 0.981 3 0.982 2 0.985 1
    $ {\sigma _n} = 50 $ PSNR 28.968 29.612 31.351x
    SSIM 0.953 2 0.960 8 0.972 6
    $ {\sigma _n} = 75 $ PSNR 26.753 27.351 29.187
    SSIM 0.927 3 0.937 1 0.960 2
    $ {\sigma _n} = 100 $ PSNR 25.296 25.753 27.982
    SSIM 0.901 4 0.912 1 0.952 6
    下载: 导出CSV
  • [1] WU Yongjun, GAO Guangjun, and CUI Can. Improved wavelet denoising by non-convex sparse regularization under double wavelet domains[J]. IEEE Access, 2019, 7: 30659–30671. doi: 10.1109/access.2019.2903125.
    [2] YUAN Qiangqiang, ZHANG Liangpei, and SHEN Huanfeng. Hyperspectral image denoising employing a spectral–spatial adaptive total variation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3660–3677. doi: 10.1109/tgrs.2012.2185054.
    [3] HE Wei, ZHANG Hongyan, ZHANG Liangpei, et al. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 3050–3061. doi: 10.1109/jstars.2015.2398433.
    [4] WANG Mengdi, YU Jing, XUE Jinghao, et al. Denoising of hyperspectral images using group low-rank representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4420–4427. doi: 10.1109/JSTARS.2016.2531178.
    [5] YUAN Qiangqiang, ZHANG Qiang, LI Jie, et al. Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1205–1218. doi: 10.1109/TGRS.2018.2865197.
    [6] TIAN Xin, XIE Kun, and ZHANG Hanling. Hyperspectral image denoising via $ {L_0} $ regularized low-rank tucker decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 3297–3313. doi: 10.1109/jstars.2023.3342408.
    [7] ZHOU Fang, JIANG Junzheng, and TAY D B. Distributed reconstruction of time-varying graph signals via a modified Newton’s method[J]. Journal of the Franklin Institute, 2022, 359(16): 9401–9421. doi: 10.1016/j.jfranklin.2022.08.059.
    [8] HU Wei, PANG Jiahao, LIU Xianming, et al. Graph signal processing for geometric data and beyond: Theory and applications[J]. IEEE Transactions on Multimedia, 2022, 24: 3961–3977. doi: 10.1109/tmm.2021.3111440.
    [9] LEUS G, MARQUES A G, MOURA J M F, et al. Graph signal processing: History, development, impact, and outlook[J]. IEEE Signal Processing Magazine, 2023, 40(4): 49–60. doi: 10.1109/msp.2023.3262906.
    [10] 潘奕洁. 基于超像素分割与低秩张量近似的高光谱图像去噪算法研究[D]. [硕士论文], 电子科技大学, 2024. doi: 10.27005/d.cnki.gdzku.2024.003710.

    PAN Yijie. Hyperspectral image denoising based on superpixel segmentation and low-rank tensor approximation[D]. [Master dissertation], University of Electronic Science and Technology of China, 2024. doi: 10.27005/d.cnki.gdzku.2024.003710.
    [11] XIAO Chuanfu and YANG Chao. RA-HOOI: Rank-adaptive higher-order orthogonal iteration for the fixed-accuracy low multilinear-rank approximation of tensors[J]. Applied Numerical Mathematics, 2024, 201: 290–300. doi: 10.1016/j.apnum.2024.03.004.
    [12] WRIGHT S J, NOWAK R D, and FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2479–2493. doi: 10.1109/tsp.2009.2016892.
    [13] HE Wei, ZHANG Hongyan, ZHANG Liangpei, et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(1): 178–188. doi: 10.1109/tgrs.2015.2452812.
    [14] WANG Yao, PENG Jiangjun, ZHAO Qian, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4): 1227–1243. doi: 10.1109/jstars.2017.2779539.
    [15] ZHUANG Lina, FU Xiyou, NG M K, et al. Hyperspectral image denoising based on global and nonlocal low-rank factorizations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10438–10454. doi: 10.1109/tgrs.2020.3046038.
    [16] HE Chengxun, SUN Le, HUANG Wei, et al. TSLRLN: Tensor subspace low-rank learning with non-local prior for hyperspectral image mixed denoising[J]. Signal Processing, 2021, 184: 108060. doi: 10.1016/j.sigpro.2021.108060.
    [17] HE Wei, YAO Quanming, LI Chao, et al. Non-local meets global: An iterative paradigm for hyperspectral image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2089–2107. doi: 10.1109/tpami.2020.3027563.
    [18] 蔡明娇, 蒋俊正, 蔡万源, 等. 张量分解和自适应图全变分的高光谱图像去噪[J]. 西安电子科技大学学报, 2024, 51(2): 157–169. doi: 10.19665/j.issn1001-2400.20230412.

    CAI Mingjiao, JIANG Junzheng, CAI Wanyuan, et al. Hyperspectral image denoising based on tensor decomposition and adaptive weight graph total variation[J]. Journal of Xidian University, 2024, 51(2): 157–169. doi: 10.19665/j.issn1001-2400.20230412.
    [19] ZHANG Hongyan, HE Wei, ZHANG Liangpei, et al. Hyperspectral image restoration using low-rank matrix recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4729–4743. doi: 10.1109/tgrs.2013.2284280.
    [20] MAFFEI A, HAUT J M, PAOLETTI M E, et al. A single model CNN for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2516–2529. doi: 10.1109/TGRS.2019.2952062.
    [21] HYDICE Urban Dataset[EB/OL]. https://rslab.ut.ac.ir/data, 2024.
    [22] RASTI B, ULFARSSON M O, and SVEINSSON J R. Hyperspectral subspace identification using SURE[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2481–2485. doi: 10.1109/lgrs.2015.2485999.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  127
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-05
  • 修回日期:  2025-07-14
  • 网络出版日期:  2025-07-24

目录

    /

    返回文章
    返回