高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀疏圆阵的双深度Q学习非均匀阵列位置优化设计

陈涛 梁曜鹏 陈旭 詹磊

陈涛, 梁曜鹏, 陈旭, 詹磊. 稀疏圆阵的双深度Q学习非均匀阵列位置优化设计[J]. 电子与信息学报. doi: 10.11999/JEIT250125
引用本文: 陈涛, 梁曜鹏, 陈旭, 詹磊. 稀疏圆阵的双深度Q学习非均匀阵列位置优化设计[J]. 电子与信息学报. doi: 10.11999/JEIT250125
CHEN Tao, LIANG Yaopeng, CHEN Xu, ZHAN Lei. Double Deep Q-Network for Non-Uniform Position Optimization in Sparse Circular Arrays[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250125
Citation: CHEN Tao, LIANG Yaopeng, CHEN Xu, ZHAN Lei. Double Deep Q-Network for Non-Uniform Position Optimization in Sparse Circular Arrays[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250125

稀疏圆阵的双深度Q学习非均匀阵列位置优化设计

doi: 10.11999/JEIT250125 cstr: 32379.14.JEIT250125
基金项目: 国家自然科学基金(62071137)
详细信息
    作者简介:

    陈涛:男,教授,博士,研究方向为宽带信号检测处理与识别、数字接收机和信号DOA估计与定位技术

    梁曜鹏:男,硕士生,研究方向为阵列信号处理、波达方向估计

    陈旭:男,副教授,博士,研究方向为MIMO信号处理,毫米波雷达成像

    詹磊:男,研究员,博士,研究方向为宽带信号处理、宽带接收器

    通讯作者:

    陈旭 xuchen95909@126.com

  • 中图分类号: TN911.7

Double Deep Q-Network for Non-Uniform Position Optimization in Sparse Circular Arrays

Funds: The National Natural Science Foundation of China (62071137)
  • 摘要: 针对工程应用中阵元位置和阵元数量受限条件下的稀疏圆形阵列布阵场景,为了满足在通道数有限的前提下保证阵列波达方向(DOA)估计性能的需求,该文提出一种基于双深度Q学习(DDQN)的稀疏圆形阵列优化设计算法,实现了更加灵活和高效的阵列优化设计策略生成。首先,为了保证优化阵列的DOA估计精度以及角度分辨力,以最小化2维DOA估计Ziv-Zakai下界(ZZB)和峰值旁瓣电平(PSL)为优化目标完成稀疏圆形阵列优化问题建模。然后,构造动作空间、状态空间、奖励值函数等模型,采用DDQN算法对优化问题进行求解,最终设计出稀疏圆形优化阵列。实验结果表明,在布阵场景受限条件下,算法收敛性能良好,稀疏圆形阵列优化设计的有效性得到验证,且设计出的稀疏圆形优化阵列具备稳健的DOA估计综合性能。
  • 图  1  稀疏圆形阵列优化设计场景

    图  2  DOA估计下界对比示意图

    图  3  阵列方向图

    图  4  DOA估计空间谱图

    图  5  基于DDQN的稀疏圆形阵列优化设计算法

    图  7  不同稀疏圆形优化阵列布阵示意图

    图  6  不同算法奖励值函数收敛效果图

    图  8  DOA估计空间谱图

    图  9  不同阵列DOA估计RMSE随信噪比变化曲线

    图  10  不同阵列测角成功率曲线

    1  基于DDQN的稀疏圆形阵列优化设计算法伪代码

     (1) 分别根据$L$、$M$和$Ns$生成阵列状态空间$S$,根据Na生成阵
       列选取动作空间$A$
     (2) for i = 1:episode
     (3)  ${S_t} = {S_0}$,根据深度Q-网络的输出采用ε-Greedy策略选取
        动作${A_t}$,得到待选取阵元
     (4)  执行动作${A_t}$,选取该阵元,${S_t}({A_t}) = 1$
     (5)  根据式(15)计算当前状态阵列对应的ZZB和PSL,得到奖
        励值$R({S_t},{A_t})$
     (6)  更新状态得到${S_{t + 1}}$,由深度目标网络计算目标Q值
     (7)  将$[{S_t},{A_t},{R_t},{S_{t{\text{ + 1}}}}]$存放到经验池,随机抽取样本进行
        训练
     (8)  根据式(17)更新$Q$值,记录储存${Q_l}$
     (9)  计算阵元选取奖赏值${R_i} = {{\mathrm{sum}}}({{\text{Q}}_i},1)$
     (9)  更新${S_t} = {S_{t + 1}}$,${A_t} = {A_{t + 1}}$
     (10) end
     (11) ${\mathrm{sort}}({R_{{\mathrm{all}}}},M - 4)$,输出最终被选中的$M - 4$个阵元
     (12) 将输出阵元与对最大阵元间距进行约束的阵元组合构成
       $M$阵元稀疏圆形优化阵列
    下载: 导出CSV

    表  2  不同稀疏圆形阵列的阵元选取情况

    稀疏圆形阵列类型 阵元选取情况
    本文算法 [1,3,6,7,13,15,19,23]
    强化学习 [1,2,3,6,7,13,19,21]
    嵌套 [1,2,3,4,5,10,15,20]
    互质 [1,5,6,9,11,13,16,17]
    遗传算法 [1,7,11,12,13,19,23,24]
    下载: 导出CSV

    表  3  不同稀疏圆阵的PSL(dB)

    稀疏圆阵类型 本文算法 强化学习 嵌套 互质 遗传算法
    PSL –6.80 –4.10 –5.60 –4.25 –4.08
    下载: 导出CSV
  • [1] SINGH U and KAMAL T S. Synthesis of thinned planar concentric circular antenna arrays using biogeography-based optimisation[J]. IET Microwaves, Antennas & Propagation, 2012, 6(7): 822–829. doi: 10.1109/ET2ECN.2012.6470099.
    [2] GIL G T, LEE J Y, KIM H, et al. Comparison of UCA-OAM and UCA-MIMO systems for sub-THz band line-of-sight spatial multiplexing transmission[J]. Journal of Communications and Networks, 2021, 23(2): 83–90. doi: 10.23919/JCN.2021.000013.
    [3] HU Weiwei and WANG Qiang. DOA estimation for UCA in the presence of mutual coupling via error model equivalence[J]. IEEE Wireless Communications Letters, 2020, 9(1): 121–124. doi: 10.1109/LWC.2019.2944816.
    [4] LI Ping, LI Jianfeng, and ZHAO Gaofeng. Low complexity DOA estimation for massive UCA with single snapshot[J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 22–27. doi: 10.23919/JSEE.2022.000003.
    [5] CAO Bin, XIONG Cong, GONG Linshu, et al. Two-dimensional direction of arrival estimation based on nested circular array[C]. Proceedings of 2022 IEEE USNC-URSI Radio Science Meeting, Denver, USA, 2022: 124–125. doi: 10.23919/USNC-URSI52669.2022.9887477.
    [6] ZHANG Xin, SUN Rongchen, GUO Kaifeng, et al. Coprime circular array DOA estimation method[C]. Proceedings of 2023 6th International Conference on Communication Engineering and Technology, Xi’an, China, 2023: 132–136. doi: 10.1109/ICCET58756.2023.00030.
    [7] ZHANG Zongyu, SHI Zhiguo, and GU Yujie. Ziv-zakai bound for DOAs estimation[J]. IEEE Transactions on Signal Processing, 2023, 71: 136–149. doi: 10.1109/TSP.2022.3229946.
    [8] ZHANG Zongyu, SHI Zhiguo, SHAO Cunqi, et al. Ziv–Zakai bound for 2D-DOAs estimation[J]. IEEE Transactions on Signal Processing, 2024, 72: 2483–2497. doi: 10.1109/TSP.2024.3375636.
    [9] PETKO J S and WERNER D H. Pareto optimization of thinned planar arrays with elliptical mainbeams and low sidelobe levels[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(5): 1748–1751. doi: 10.1109/TAP.2011.2122212.
    [10] 于波, 陈客松, 朱盼, 等. 稀布圆阵的降维优化方法[J]. 电子与信息学报, 2014, 36(2): 476–481. doi: 10.3724/SP.J.1146.2013.00526.

    YU Bo, CHEN Kesong, ZHU Pan, et al. An optimum method of sparse concentric rings array based on dimensionality reduction[J]. Journal of Electronics & Information Technology, 2014, 36(2): 476–481. doi: 10.3724/SP.J.1146.2013.00526.
    [11] JIANG Yi, ZHANG Shu, GUO Qiang, et al. Synthesis of uniformly excited concentric ring arrays using the improved integer GA[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1124–1127. doi: 10.1109/LAWP.2015.2496173.
    [12] GUO Qiang, WANG Yani, YUAN Ding, et al. Optimization of sparse concentric ring arrays based on multiple constraints[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 781–785. doi: 10.1109/LAWP.2020.2980166.
    [13] LANG Rongling, XU Hao, GAO Fei, et al. Improving DOA estimation of GNSS interference through sparse non-uniform array reconfiguration[J]. Chinese Journal of Aeronautics, 2025, 38(8): 103384. doi: 10.1016/j.cja.2024.103384.
    [14] ZHANG Binchao, JIN Cheng, CAO Kaiqi, et al. Cognitive conformal antenna array exploiting deep reinforcement learning method[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5094–5104. doi: 10.1109/TAP.2021.3096994.
    [15] FILIK T and TUNCER T E. Design and evaluation of V-shaped arrays for 2-D DOA estimation[C]. Proceedings of 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, USA, 2008: 2477–2480. doi: 10.1109/ICASSP.2008.4518150.
    [16] CHEN Zezong, HE Chao, ZHAO Chen, et al. Enhanced target detection for HFSWR by 2-D MUSIC based on sparse recovery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1983–1987. doi: 10.1109/LGRS.2017.2745048.
    [17] 薛青, 来东, 徐勇军, 等. 基于分布式联邦学习的毫米波通信系统波束配置方法[J]. 电子与信息学报, 2024, 46(1): 138–145. doi: 10.11999/JEIT221536.

    XUE Qing, LAI Dong, XU Yongjun, et al. Beam configuration for millimeter wave communication systems based on distributed federated learning[J]. Journal of Electronics & Information Technology, 2024, 46(1): 138–145. doi: 10.11999/JEIT221536.
    [18] DING Yu, HAN Huimei, LU Weidang, et al. DDQN-based trajectory and resource optimization for UAV-Aided MEC secure communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 6006–6011. doi: 10.1109/TVT.2023.3335210.
    [19] 冯伟杨, 林思雨, 冯婧涛, 等. 基于Q学习的蜂窝车联网边缘计算系统PC-5/Uu接口联合卸载策略[J]. 电子学报, 2024, 52(2): 385–395. doi: 10.12263/DZXB.20220922.

    FENG Weiyang, LIN Siyu, FENG Jingtao, et al. Q-Learning based joint PC-5/Uu offloading strategy for C-V2X based vehicular edge computing system[J]. Acta Electronica Sinica, 2024, 52(2): 385–395. doi: 10.12263/DZXB.20220922.
    [20] CHEN Tao, WANG Xilin, SHI Lin, et al. Array sparse optimization method based on adaptive genetic algorithm[C]. IET International Radar Conference, 2020: 1271–1275. doi: 10.1049/icp.2021.0648. (查阅网上资料,无法确认作者的全拼信息是否正确).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-03
  • 修回日期:  2025-08-28
  • 网络出版日期:  2025-09-02

目录

    /

    返回文章
    返回