高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间引力波探测中星间伪码测距建模与仿真分析

孙晨颖 姚未来 梁新栋 贾建军

孙晨颖, 姚未来, 梁新栋, 贾建军. 空间引力波探测中星间伪码测距建模与仿真分析[J]. 电子与信息学报, 2025, 47(6): 1826-1836. doi: 10.11999/JEIT250121
引用本文: 孙晨颖, 姚未来, 梁新栋, 贾建军. 空间引力波探测中星间伪码测距建模与仿真分析[J]. 电子与信息学报, 2025, 47(6): 1826-1836. doi: 10.11999/JEIT250121
SUN Chenying, YAO Weilai, LIANG Xindong, JIA Jianjun. Modeling and Simulation Analysis of Inter-satellites Pseudo-code Ranging for Space Gravitational Wave Detection[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1826-1836. doi: 10.11999/JEIT250121
Citation: SUN Chenying, YAO Weilai, LIANG Xindong, JIA Jianjun. Modeling and Simulation Analysis of Inter-satellites Pseudo-code Ranging for Space Gravitational Wave Detection[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1826-1836. doi: 10.11999/JEIT250121

空间引力波探测中星间伪码测距建模与仿真分析

doi: 10.11999/JEIT250121 cstr: 32379.14.JEIT250121
基金项目: 国家重点研发计划(2023YFC2205401)
详细信息
    作者简介:

    孙晨颖:女,博士生,研究方向为空间引力波探测中星间长基线测距与通信技术

    姚未来:男,博士生,研究方向为空间引力波探测激光干涉仪及精密锁相环

    梁新栋:男,副研究员,研究方向为空间激光精密测量、空间引力波探测技术

    贾建军:男,研究员,研究方向为空间主动光电与量子精密测量、空间大口径望远镜、空间引力波探测技术

    通讯作者:

    贾建军 jjjun10@mail.sitp.ac.cn

  • 中图分类号: TN927; TP873

Modeling and Simulation Analysis of Inter-satellites Pseudo-code Ranging for Space Gravitational Wave Detection

Funds: National Key R&D Program of China (2023YFC2205401)
  • 摘要: 为满足空间引力波探测中时延干涉算法(TDI)对米级精度星间距数据的需求,基于激光链路建立星间绝对距离测量系统。该文以空间引力波探测太极计划为背景,通过分析空间引力波探测中星间测距的实现原理,设计了基于伪随机码(PRN)低深度相位调制的星间测距模型,分析了测距精度的主要影响因素,并基于直接数字合成器(DDS)模拟外差干涉信号,进行了伪码测距系统的FPGA仿真验证。仿真结果表明,采用该模型可获得的理论测距精度可达厘米量级,达到了空间引力波探测的米级精度需求。该激光测距方案对卫星导航和天基引力波探测的工程应用具有参考价值。
  • 图  1  星间激光测距实现原理简图

    图  2  调制深度与调制功率占比关系图

    图  3  相位调制0.4 rad的载波时域图

    图  4  数字锁相环路设计框图

    图  5  伪码捕获与跟踪实现框图

    图  6  散粒噪声对伪码时序和相关运算的影响

    图  7  数据编码信号结构图

    图  8  不同数据速率下伪码的相关值

    图  9  数据编码改进示意图

    图  10  码间串扰下伪码的时间序列图及伪码相关图

    图  11  码间串扰改进示意图

    图  12  不同积分长度下伪码的相关值

    图  13  DLL跟踪环路测距性能仿真框图

    图  14  DLL跟踪环路在不同情况下的测距精度

    图  15  曼彻斯特编码前后DPLL输出PRN的失真情况

    图  16  接收系统DPLL与DLL测距性能仿真框图

    表  1  散粒噪声与载噪比理论预估值

    接收功率
    ${P_S}\left( {{\text{pW}}} \right)$
    相位噪声
    $ \vartheta _{}^{{\mathrm{sn}}}\left( {{\text{μ rad/}}\sqrt {{\text{Hz}}} } \right) $
    载噪比
    $ C/N^{{\mathrm{sn}}}\left( {{\text{dB}} \cdot {\text{Hz}}} \right) $
    1767.53 19.24 94.32
    757.51 29.38 90.64
    下载: 导出CSV

    表  2  不同数据速率对应的DLL测距精度(m)

    数据速率(kbps)积分器个数测距精度
    19.5310.0634
    19.5320.0196
    39.0610.1408
    39.0620.0769
    下载: 导出CSV

    表  3  存在本地PRN码时不同散粒噪声下对应的DLL测距精度(m)

    散粒噪声
    (μrad/Hz1/2)
    无本地PRN 有本地PRN 减去本地PRN
    0 1.1005×10–9 0.3231 2.3550×10–9
    20 0.0323 0.3326 0.0327
    30 0.0359 0.3390 0.0359
    下载: 导出CSV

    表  4  单独DLL在不同情况下的测距精度(m)

    散粒噪声
    (μrad/Hz1/2)
    本地PRN码 数据速率(kbps)
    0 19.53 39.06
    0 1.1005×10–9 0.0196 0.0350
    0 2.3550×10–9 0.0722 0.0769
    20 0.0323 0.0516 0.0502
    20 0.0327 0.0834 0.0834
    30 0.0359 0.0536 0.0509
    30 0.0359 0.0821 0.0848
    下载: 导出CSV

    表  5  不同条件对应DPLL与DLL的测距精度(m)

    调制深度(rad) 数据速率
    (kbps)
    单向/
    双向测距
    载噪比(dB-Hz)
    81.94 87.96 93.98
    0.4 0 0.0302 0.0257 0.0061
    0.4 0 0.0332 0.0336 0.0158
    0.4 19 0.0547 0.0456 0.0111
    0.4 19 0.0646 0.0642 0.0310
    0.4 39 0.2033 0.1611 0.0422
    0.2 0 0.0599 0.0452 0.0116
    0.2 0 0.0632 0.0498 0.0123
    0.2 19 0.1076 0.0812 0.0211
    0.2 19 0.1236 0.0897 0.0235
    下载: 导出CSV
  • [1] BENDER P L, BRILLET A, CIUFOLINI I, et al. LISA. Laser interferometer space antenna for the detection and observation of gravitational waves. An international project in the field of fundamental physics in space[R]. MPQ 233, 1998: 1–206.
    [2] LUO Jun, CHEN Lisheng, DUAN Huizong, et al. TianQin: A space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010.
    [3] LUO Ziren, WANG Yan, WU Yueliang, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108. doi: 10.1093/ptep/ptaa083.
    [4] ESTEBAN DELGADO J J. Laser ranging and data communication for the laser interferometer space antenna[D]. [Ph. D. dissertation], Universidad de Granada, 2012.
    [5] ESTEBAN J J, GARCÍA A F, EICHHOLZ J, et al. Ranging and phase measurement for LISA[J]. Journal of Physics: Conference Series, 2010, 228: 012045. doi: 10.1088/1742-6596/228/1/012045.
    [6] REINHARDT J N, STAAB M, YAMAMOTO K, et al. Ranging sensor fusion in LISA data processing: Treatment of ambiguities, noise, and onboard delays in LISA ranging observables[J]. Physical Review D, 2024, 109(2): 022004. doi: 10.1103/PhysRevD.109.022004.
    [7] SUTTON A, MCKENZIE K, WARE B, et al. Laser ranging and communications for LISA[J]. Optics Express, 2010, 18(20): 20759–20773. doi: 10.1364/OE.18.020759.
    [8] 邓汝杰, 张艺斌, 刘河山, 等. 太极计划中的星间激光测距地面电子学验证[J]. 中国光学(中英文), 2023, 16(4): 765–776. doi: 10.37188/CO.2022-0041.

    DENG Rujie, ZHANG Yibin, LIU Heshan, et al. Ground electronics verification of inter-satellites laser ranging in the Taiji program[J]. Chinese Optics, 2023, 16(4): 765–776. doi: 10.37188/CO.2022-0041.
    [9] XIE Siyuan, ZENG Hanyu, PAN Yuhang, et al. Bi-directional PRN laser ranging and clock synchronization for TianQin mission[J]. Optics Communications, 2023, 541: 129558. doi: 10.1016/j.optcom.2023.129558.
    [10] EURINGER P, HECHENBLAIKNER G, SOUALL F, et al. Performance analysis of sequential carrier- and code-tracking receivers in the context of high-precision spaceborne metrology systems[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1000510. doi: 10.1109/TIM.2023.3332388.
    [11] 刘河山, 高瑞弘, 罗子人, 等. 空间引力波探测中的绝对距离测量及通信技术[J]. 中国光学, 2019, 12(3): 486–492. doi: 10.3788/co.20191203.0486.

    LIU Heshan, GAO Ruihong, LUO Ziren, et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486–492. doi: 10.3788/co.20191203.0486.
    [12] ZENG Hanyu, YAN Hao, XIE Siyuan, et al. Experimental demonstration of weak-light inter-spacecraft clock jitter readout for TianQin[J]. Optics Express, 2023, 31(21): 34648–34666. doi: 10.1364/OE.503164.
    [13] ESTEBAN J J, GARCÍA A F, BARKE S, et al. Experimental demonstration of weak-light laser ranging and data communication for LISA[J]. Optics Express, 2011, 19(17): 15937–15946. doi: 10.1364/OE.19.015937.
    [14] SWEENEY D M. Laser communications for LISA and the University of Florida LISA interferometry simulator[D]. [Ph. D. dissertation], University of Florida, 2012.
    [15] GERBERDING O, SHEARD B, BYKOV I, et al. Phasemeter core for intersatellite laser heterodyne interferometry: Modelling, simulations and experiments[J]. Classical and Quantum Gravity, 2013, 30(23): 235029. doi: 10.1088/0264-9381/30/23/235029.
    [16] 胡寿松. 自动控制原理[M]. 6版. 北京: 科学出版社, 2013: 209–213.

    HU Shousong. Principles of Automatic Control[M]. 6th ed. Beijing: Science Press, 2013: 209–213.
    [17] GARDNER F M. Phaselock Techniques[M]. 3rd ed. Hoboken: Wiley-Interscience, 2005.
    [18] 鲍爱达, 侯世豪, 郭鑫, 等. 星间链路通信收发一体化系统设计[J]. 计算机测量与控制, 2024, 32(8): 280–286. doi: 10.16526/j.cnki.11-4762/tp.2024.08.040.

    BAO Aida, HOU Shihao, GUO Xin, et al. Design of transceiver integrated system for inter-satellite link communication[J]. Computer Measurement & Control, 2024, 32(8): 280–286. doi: 10.16526/j.cnki.11-4762/tp.2024.08.040.
    [19] BARKE S. Inter-spacecraft frequency distribution for future gravitational wave observatories[D]. [Ph. D. dissertation], Gottfried Wilhelm Leibniz Universität Hannover, 2015. doi: 10.15488/8405.
    [20] HEINZEL G, ESTEBAN J J, BARKE S, et al. Auxiliary functions of the LISA laser link: Ranging, clock noise transfer and data communication[J]. Classical and Quantum Gravity, 2011, 28(9): 094008. doi: 10.1088/0264-9381/28/9/094008.
    [21] BRAUSE N C. Auxiliary function development for the LISA metrology system[D]. [Ph. D. dissertation], Institutionelles Repositorium der Leibniz Universität Hannover, 2018. doi: 10.15488/3511.
    [22] YAMAMOTO K, BYKOV I, REINHARDT J N, et al. Experimental end-to-end demonstration of intersatellite absolute ranging for the Laser Interferometer Space Antenna[J]. American Physical Society, 2024, 22(5): 054020. doi: 10.1103/PhysRevApplied.22.054020.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  122
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-28
  • 修回日期:  2025-04-25
  • 网络出版日期:  2025-05-10
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回