高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用户敏感权重驱动的单侧个性化差分隐私随机响应算法

刘振华 王文馨 董新锋 王保仓

刘振华, 王文馨, 董新锋, 王保仓. 用户敏感权重驱动的单侧个性化差分隐私随机响应算法[J]. 电子与信息学报. doi: 10.11999/JEIT250099
引用本文: 刘振华, 王文馨, 董新锋, 王保仓. 用户敏感权重驱动的单侧个性化差分隐私随机响应算法[J]. 电子与信息学报. doi: 10.11999/JEIT250099
LIU Zhenhua, WANG Wenxin, DONG Xinfeng, WANG Baocang. One-sided Personalized Differential Privacy Random Response Algorithm Driven by User Sensitive Weights[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250099
Citation: LIU Zhenhua, WANG Wenxin, DONG Xinfeng, WANG Baocang. One-sided Personalized Differential Privacy Random Response Algorithm Driven by User Sensitive Weights[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250099

用户敏感权重驱动的单侧个性化差分隐私随机响应算法

doi: 10.11999/JEIT250099
基金项目: 国家密码科学基金(2025NCSF02032),陕西省自然科学基金(2022JZ-38),国家自然科学基金(61807026),保密通信重点实验室稳定计划支持项目(2023)
详细信息
    作者简介:

    刘振华:男,教授,研究方向为高级密码算法的数学设计与应用

    王文馨:女,硕士生,研究方向为个性化差分隐私算法的设计与应用

    董新锋:男,博士,研究方向为对称密码设计与分析等

    王保仓:男,教授,研究方向为云计算安全、全同态加密、后量子密码算法、数论算法等

    通讯作者:

    王文馨 wenxin_wang@stu.xidian.edu.cn

  • 中图分类号: TN918

One-sided Personalized Differential Privacy Random Response Algorithm Driven by User Sensitive Weights

Funds: The National Cryptologic Science Fund of China (2025NCSF02032), The Natural Science Foundation of Shaanxi Province (2022JZ-38), The National Natural Science Foundation of China (61807026), The Secure Communication Key Laboratory Stabilization Program Support Project (2023)
  • 摘要: 单侧差分隐私机制具有敏感屏蔽特性,能确保攻击者无法显著降低其对记录敏感性的不确定性,但是该机制中的单侧差分隐私随机响应算法仅适用于敏感记录百分比较低的数据集。为克服上述算法在敏感记录百分比较高数据集中的局限性,该文提出一种新的算法——单侧个性化差分隐私随机响应算法。该算法引入敏感规范函数的定义,为不同用户的各项数据分别赋予不同的敏感级别,然后设计新的个性化采样方法,并基于用户数据权重值进行个性化采样和加噪处理。相对于单侧差分隐私随机响应算法,该文所提随机响应算法更细致地考虑到用户对不同数据的敏感程度。特别地,该文将综合权重值映射到需要添加的噪声量以满足严格的隐私保护要求。最后,在合成数据集和真实数据集上进行仿真实验,对比了单侧个性化差分隐私随机响应算法与现有的随机响应算法。实验结果表明,在不同的上限阈值下,该文所提算法不仅在敏感记录百分比较低时提供更优的数据效用,而且适用于敏感记录百分比较高的场景,并显著提高了查询结果的准确性和稳健性。
  • 图  1  OSPDPRR流程示意图

    图  2  OSPDPRR系统模型示意图

    图  3  OSDPRR和OSPDPRR效率比较图

    图  4  拉普拉斯分布数据误差比较图

    图  5  正态分布数据误差比较图

    图  6  真实数据误差比较图

    1  OSPDPRR算法.

     输入:数据集$D$,拉普拉斯机制$\mathcal{M}$,用户集$U$,阈值$t$,查询函数${\boldsymbol{f}}$;
     输出:扰动结果$\hat D$。
     阶段1:
     (1) 对用户集$U$中的每个用户$u$,数据集$D$中的每条数据$x_i^u$,通过敏感规范函数$ S $计算出用户$u$的第$i$条数据的权重值$ w_i^u $。
     (2) 将权重矩阵${\mathbf{w}}$进行标准归一化,计算得到标准权重矩阵${\mathbf{\bar w}}$。
     (3) 计算正理想值${w^ + }$和负理想值${w^ - }$。
     (4) 计算目标用户$u$到正理想值的距离$W_u^ + $和负理想值的距离$W_u^ - $。
     (5) 计算每个用户$u$的综合权重值${M_u}$,得到综合权重值集合$C$。
     阶段2:
     (6) 计算$A = \max C$, $B = \min C$。
     (7) 计算每个用户$u$的采样概率${\pi _u}$,得到采样用户数据集$X$及采样用户的综合权重值集合$M$。
     阶段3:
     (8) 通过方程$\varepsilon = {{\mathrm{e}}^m}$计算出隐私预算$\varepsilon $,其中$m$是集合$M$中的最小值。
     (9) 定义$ {\Delta }{{\boldsymbol{f}}}=\underset{D={D}^{\prime }{\displaystyle \cup \left\{{X}_{u}\right\}},{X}_{u}\in D}{\max}\Vert {\boldsymbol{f}}(D)-{\boldsymbol{f}}({D}^{\prime })\Vert_l $,$D'$是数据集$D$的相邻数据集。
     (10) 计算扰动结果$\hat D = f(D) + {\text{Lap}}(0,{{{\Delta {\boldsymbol{f}}}}}/{\varepsilon })$。
     (11) 返回扰动结果$\hat D$。
    下载: 导出CSV
  • [1] DWORK C. Differential privacy[C]. 33rd International Colloquium on Automata, Languages and Programming, Venice, Italy, 2006: 1–12. doi: 10.1007/11787006_1.
    [2] JORGENSEN Z, YU Ting, and CORMODE G. Conservative or liberal? Personalized differential privacy[C]. The 31st International Conference on Data Engineering, Seoul, Korea (South), 2015: 1023–1034. doi: 10.1109/ICDE.2015.7113353.
    [3] KOTSOGIANNIS I, DOUDALIS S, HANEY S, et al. One-sided differential privacy[C]. The 36th International Conference on Data Engineering, Dallas, USA, 2020: 493–504. doi: 10.1109/ICDE48307.2020.00049.
    [4] RATLIFF Z and VADHAN S. A framework for differential privacy against timing attacks[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 3615–3629. doi: 10.1145/3658644.3690206.
    [5] WANG Shiming, XIANG Liyao, CHENG Bowei, et al. Curator attack: When blackbox differential privacy auditing loses its power[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 3540–3554. doi: 10.1145/3658644.3690367.
    [6] LIU Junxu, LOU Jian, XIONG Li, et al. Cross-silo federated learning with record-level personalized differential privacy[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, 2024: 303–317. doi: 10.1145/3658644.3670351.
    [7] IMOLA J, CHOWDHURY A R, and CHAUDHURI K. Metric differential privacy at the user-level via the earth-mover's distance[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 348–362. doi: 10.1145/3658644.3690363.
    [8] 魏立斐, 张无忌, 张蕾, 等. 基于本地差分隐私的异步横向联邦安全梯度聚合方案[J]. 电子与信息学报, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.

    WEI Lifei, ZHANG Wuji, ZHANG Lei, et al. A secure gradient aggregation scheme based on local differential privacy in asynchronous horizontal federated learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.
    [9] DU Minxin, YUE Xiang, CHOW S S M, et al. DP-Forward: Fine-tuning and inference on language models with differential privacy in forward pass[C]. ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 2023: 2665–2679. doi: 10.1145/3576915.3616592.
    [10] DWORK C, KENTHAPADI K, MCSHERRY F, et al. Our data, ourselves: Privacy via distributed noise generation[C]. 25th International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, 2006: 486–503. doi: 10.1007/11761679_29.
    [11] GEHRKE J, HAY M, LUI E, et al. Crowd-blending privacy[C]. 32nd Annual Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2012: 479–496. doi: 10.1007/978-3-642-32009-5_28.
    [12] YANG Bin, SATO I, and NAKAGAWA H. Bayesian differential privacy on correlated data[C]. ACM International Conference on Management of Data, Melbourne, Australia, 2015: 747–762. doi: 10.1145/2723372.2747643.
    [13] FU Yucheng and WANG Tianhao. Benchmarking secure sampling protocols for differential privacy[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 318–332. doi: 10.1145/3658644.3690257.
    [14] LU Mingjie and LIU Zhenhua. Improving accuracy of interactive queries in personalized differential privacy[C]. 6th International Conference on Frontiers in Cyber Security, Chengdu, China, 2024: 141–159. doi: 10.1007/978-981-99-9331-4_10.
    [15] NISSIM K, RASKHODNIKOVA S, and SMITH A. Smooth sensitivity and sampling in private data analysis[C]. Thirty-Ninth Annual ACM Symposium on Theory of Computing, San Diego, USA, 2007: 75–84. doi: 10.1145/1250790.1250803.
    [16] HUANG Wen, ZHOU Shijie, ZHU Tianqing, et al. Privately publishing internet of things data: Bring personalized sampling into differentially private mechanisms[J]. IEEE Internet of Things Journal, 2022, 9(1): 80–91. doi: 10.1109/JIOT.2021.3089518.
    [17] 朱友文, 王珂, 周玉倩. 一种满足个性化差分隐私的多方垂直划分数据合成机制[J]. 电子与信息学报, 2024, 46(5): 2159–2176. doi: 10.11999/JEIT231158.

    ZHU Youwen, WANG Ke, and ZHOU Yuqian. A multi-party vertically partitioned data synthesis mechanism with personalized differential privacy[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2159–2176. doi: 10.11999/JEIT231158.
    [18] LIU Zhenhua, WANG Wenxin, LIANG Han, et al. Enhancing data utility in personalized differential privacy: A fine-grained processing approach[C]. Second International Conference on Data Security and Privacy Protection, Xi’an, China, 2025: 47–66. doi: 10.1007/978-981-97-8546-9_3.
    [19] LI Yijing, TAO Xiaofeng, ZHANG Xuefei, et al. Break the data barriers while keeping privacy: A graph differential privacy method[J]. IEEE Internet of Things Journal, 2023, 10(5): 3840–3850. doi: 10.1109/JIOT.2022.3151348.
    [20] LIU Jiandong, ZHANG Lan, LV Chaojie, et al. TPMDP: Threshold personalized multi-party differential privacy via optimal Gaussian mechanism[C]. 20th International Conference on Mobile Ad Hoc and Smart Systems, Toronto, Canada, 2023: 161–169. doi: 10.1109/MASS58611.2023.00027.
    [21] XU Chuan, DING Yingyi, CHEN Chao, et al. Personalized location privacy protection for location-based services in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 1163–1177. doi: 10.1109/TITS.2022.3182019.
    [22] ZHANG Mingyue, ZHOU Junlong, ZHANG Gongxuan, et al. APDP: Attribute-based personalized differential privacy data publishing scheme for social networks[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(2): 922–933. doi: 10.1109/TNSE.2022.3224731.
    [23] GENG Quan, DING Wei, GUO Ruiqi, et al. Tight analysis of privacy and utility tradeoff in approximate differential privacy[C]. The 23rd International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 2020: 89–99.
    [24] HUANG Wen, ZHOU Shijie, LIAO Yongjian, et al. Optimizing query times for multiple users scenario of differential privacy[J]. IEEE Access, 2019, 7: 183292–183299. doi: 10.1109/ACCESS.2019.2960283.
    [25] NIU Ben, CHEN Yahong, WANG Boyang, et al. AdaPDP: Adaptive personalized differential privacy[C]. IEEE Conference on Computer Communications, Vancouver, Canada, 2021: 1–10. doi: 10.1109/INFOCOM42981.2021.9488825.
    [26] HANEY S, MACHANAVAJJHALA A, and DING Bolin. Design of policy-aware differentially private algorithms[J]. Proceedings of the VLDB Endowment, 2015, 9(4): 264–275. doi: 10.14778/2856318.2856322.
    [27] BÖHLER J, BERNAU D, and KERSCHBAUM F. Privacy-preserving outlier detection for data streams[C]. 31st Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy XXXI, Philadelphia, USA, 2017: 225–238. doi: 10.1007/978-3-319-61176-1_12.
    [28] ASIF H, VAIDYA J, and PAPAKONSTANTINOU P A. Identifying anomalies while preserving privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12264–12281. doi: 10.1109/TKDE.2021.3129633.
    [29] LI Xin, ZHU Hong, ZHANG Zhiqiang, et al. Item-oriented personalized LDP for discrete distribution estimation[C]. 28th European Symposium on Research in Computer Security, The Hague, The Netherlands, 2024: 446–466. doi: 10.1007/978-3-031-51476-0_22.
    [30] GOLDBERG A, FANTI G C, and SHAH N B. Batching of tasks by users of pseudonymous forums: Anonymity compromise and protection[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2023, 7(1): 22. doi: 10.1145/3579335.
    [31] PAPPACHAN P, ZHANG Shufan, HE Xi, et al. Preventing inferences through data dependencies on sensitive data[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(10): 5308–5327. doi: 10.1109/TKDE.2023.3336630.
    [32] MCSHERRY F. Privacy integrated queries: An extensible platform for privacy-preserving data analysis[J]. Communications of the ACM, 2010, 53(9): 89–97. doi: 10.1145/1810891.1810916.
    [33] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]. Third Theory of Cryptography Conference on Theory of Cryptography, New York, USA, 2006: 265–284. doi: 10.1007/11681878_14.
    [34] DEVAKUMAR K P. Data survey of COVID-19[EB/OL]. https://www.kaggle.com/datasets/imdevskp/corona-virus-report, 2024.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  8
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-20
  • 修回日期:  2025-04-14
  • 网络出版日期:  2025-04-15

目录

    /

    返回文章
    返回