高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图结构数据驱动的非合作集群无线通信网络拓扑推断

侯长波 付丁一 宋振 王斌 周志超

侯长波, 付丁一, 宋振, 王斌, 周志超. 图结构数据驱动的非合作集群无线通信网络拓扑推断[J]. 电子与信息学报. doi: 10.11999/JEIT250084
引用本文: 侯长波, 付丁一, 宋振, 王斌, 周志超. 图结构数据驱动的非合作集群无线通信网络拓扑推断[J]. 电子与信息学报. doi: 10.11999/JEIT250084
HOU Changbo, FU Dingyi, SONG Zhen, WANG Bin, ZHOU Zhichao. Graph-structured Data-driven Topology Inference for Non-cooperative Clustered Wireless Communication Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250084
Citation: HOU Changbo, FU Dingyi, SONG Zhen, WANG Bin, ZHOU Zhichao. Graph-structured Data-driven Topology Inference for Non-cooperative Clustered Wireless Communication Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250084

图结构数据驱动的非合作集群无线通信网络拓扑推断

doi: 10.11999/JEIT250084 cstr: 32379.14.JEIT250084
基金项目: 国家自然科学基金(U23A20271,中央高校基本科研业务费(3072024XX0808)
详细信息
    作者简介:

    侯长波:男,教授,研究方向为非合作无线通信网络拓扑预测、深度学习、宽带信号处理与认知无线电

    付丁一:女,硕士生,研究方向为非合作无线通信网络拓扑预测与深度学习

    宋振:男,博士生,研究方向为通信对抗与人工智能应用与多信号分离与识别

    王斌:男,博士生,研究方向为信号处理与电磁辐射源定位

    周志超:男,博士生,研究方向为非合作无线通信网络拓扑推理与图神经网络应用

    通讯作者:

    付丁一 fdy_0429@hrbeu.edu.cn

  • 中图分类号: TN92

Graph-structured Data-driven Topology Inference for Non-cooperative Clustered Wireless Communication Networks

Funds: The National Natural Science Foundation of China (U23A20271), The Fundamental Research Funds for the Central Universities (3072024XX0808)
  • 摘要: 集群目标通信网络在非合作场景中极大增加了电磁环境探测的难度。针对非合作环境下缺乏拓扑先验信息的挑战,该文提出基于图结构数据驱动的拓扑推断方法。通过场景假设分析与图神经网络建模,构建了基于因果推断与GNN结合的拓扑推断混合模型,其中因果推断包括多维霍克斯过程(MHP)、Peter–Clarks瞬时条件独立性检测(PCMCI)。实验表明在节点数8~13、连边概率0.45的条件下,PCMCI+GED方法的F1分数较PCMCI提升31.2%,较GCN方法提升23.9%。研究证实因果先验与图神经网络的协同机制可有效提高拓扑推断精度,50%节点特征输入的混合模型在保持93%精度的同时减少88.6%计算耗时,为大规模网络场景提供可行解决方案。
  • 图  1  无线通信网络拓扑推断场景

    图  2  时域矩阵示例

    图  3  基于GCN的无线通信网络拓扑推断模型框架

    图  4  基于因果推断与图神经网络结合的拓扑推断结构框架图

    图  5  用于修正因果关系的GED框架图

    图  6  无线通信网络拓扑模型随机化方案

    图  7  不同网络结构下的各无线通信网络拓扑推断模型性能

    图  8  N与GED的性能对比

    图  9  有PCMCI作为先验信息下的GCN与GED性能对比

    图  10  不同时域矩阵采样时长下的拓扑推断模型性能趋势

    图  11  无线通信网络拓扑推断方法平均用时比较

    图  12  推断模型输出的邻接矩阵热力图

    表  1  NS-3无线通信网络仿真参数

    参数名称 参数类型
    SimTime 仿真总时间 4s
    SinkStartTime 节点接收行为起始时间 1.000 1 s
    SinkStopTime 节点接收行为停止时间 3.900 01 s
    AppStartTime 应用层起始时间 2.000 1 s
    AppStopTime 应用层停止时间 3.800 01 s
    AppPacketRate 应用层数据速率 40 Kbit/(s·Hz)
    PacketSize 数据包大小 1 000 Byte
    LinkRate 链路数据速率 10 Mbit/(s·Hz)
    DataRate 数据传输速率 10 Mbit/(s·Hz)
    LinkDelay 链路延迟 2 ms
    下载: 导出CSV

    表  2  输入不同采样时长的时域矩阵情况下的拓扑推断模型平均F1分数

    采样时长(ms) MHP PCMCI GED GCN MHP50%+GED MHP100%+GED PCMCI50%+GED PCMCI100%+GED
    0.05 0.461 4 0.447 1 0.568 7 0.577 2 0.562 0 0.564 7 0.569 8 0.563 4
    0.10 0.559 1 0.516 3 0.686 0 0.697 9 0.716 9 0.733 3 0.704 8 0.764 0
    0.15 0.525 6 0.509 2 0.659 2 0.661 3 0.665 2 0.623 3 0.628 7 0.673 5
    0.20 0.483 3 0.482 9 0.603 6 0.592 0 0.594 1 0.571 9 0.551 1 0.602 1
    0.25 0.438 7 0.416 5 0.426 1 0.438 7 0.511 4 0.521 2 0.507 0 0.511 8
    0.30 0.281 2 0.276 6 0.300 1 0.281 8 0.306 4 0.311 8 0.307 5 0.310 9
    下载: 导出CSV
  • [1] AL AJRAWI S and TRAN B. Mobile wireless ad-hoc network routing protocols comparison for real-time military application[J]. Spatial Information Research, 2024, 32(1): 119–129. doi: 10.1007/s41324-023-00535-z.
    [2] GOMES J E C, EHLERT R R, BOESCHE R M, et al. Surveying emerging network approaches for military command and control systems[J]. ACM Computing Surveys, 2024, 56(6): 143. doi: 10.1145/3626090.
    [3] AHMAD R B, KOLAWOLE S F, and CHINEDU P U. Design of multimedia mobile ad-hoc network for military applications: A review[J]. ATBU Journal of Science, Technology and Education, 2023, 11(4): 517–524.
    [4] MOHAMMED B A, AL-SHAREEDA M A, ALSADHAN A A, et al. Service based VEINS framework for vehicular Ad-hoc network (VANET): A systematic review of state-of-the-art[J]. Peer-to-Peer Networking and Applications, 2024, 17(4): 2259–2281. doi: 10.1007/s12083-024-01692-0.
    [5] ALMANSOR M J, DIN N M, BAHARUDDIN M Z, et al. Routing protocols strategies for flying Ad-Hoc network (FANET): Review, taxonomy, and open research issues[J]. Alexandria Engineering Journal, 2024, 109: 553–577. doi: 10.1016/j.aej.2024.09.032.
    [6] 宋叶辉, 丁国如, 徐承龙, 等. 面向非合作无人机通信网络的通联拓扑推理技术[J]. 电子与信息学报, 2022, 44(3): 924–939. doi: 10.11999/JEIT211410.

    SONG Yehui, DING Guoru, XU Chenglong, et al. Communication topology inference technology for non-cooperative UAV communication network[J]. Journal of Electronics & Information Technology, 2022, 44(3): 924–939. doi: 10.11999/JEIT211410.
    [7] 刘子彤, 丁国如, 王威, 等. 面向非合作无线网络的拓扑感知技术分析[J]. 指挥与控制学报, 2021, 7(2): 153–159. doi: 10.3969/j.issn.2096-0204.2021.02.0153.

    LIU Zitong, DING Guoru, WANG Wei, et al. Analysis of topology sensing technology for non-collaborative wireless networks[J]. Journal of Command and Control, 2021, 7(2): 153–159. doi: 10.3969/j.issn.2096-0204.2021.02.0153.
    [8] RÉAU M, RENAUD N, XUE L C, et al. DeepRank-GNN: A graph neural network framework to learn patterns in protein–protein interfaces[J]. Bioinformatics, 2023, 39(1): btac759. doi: 10.1093/bioinformatics/btac759.
    [9] JIANG Weiwei, LUO Jiayun, HE Miao, et al. Graph neural network for traffic forecasting: The research progress[J]. ISPRS International Journal of Geo-Information, 2023, 12(3): 100. doi: 10.3390/ijgi12030100.
    [10] LI Xiao, SUN Li, LING Mengjie, et al. A survey of graph neural network based recommendation in social networks[J]. Neurocomputing, 2023, 549: 126441. doi: 10.1016/j.neucom.2023.126441.
    [11] ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57–81. doi: 10.1016/j.aiopen.2021.01.001.
    [12] LIU Zitong, WANG Wei, DING Guoru, et al. Topology sensing of non-collaborative wireless networks with conditional Granger causality[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3): 1501–1515. doi: 10.1109/TNSE.2022.3146465.
    [13] LIU Zitong, SUN Jiachen, SHEN Feng, et al. Topology sensing of wireless networks based on Hawkes process[J]. Mobile Networks and Applications, 2020, 25(6): 2459–2470. doi: 10.1007/s11036-020-01588-2.
    [14] SHARMA P, BUCCI D J, BRAHMA S K, et al. Communication network topology inference via transfer entropy[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 562–575. doi: 10.1109/TNSE.2018.2889454.
    [15] TILGHMAN P and ROSENBLUTH D. Inferring wireless communications links and network topology from externals using Granger causality[C]. Proceedings of the IEEE Military Communications Conference, San Diego, USA, 2013: 1284–1289. doi: 10.1109/MILCOM.2013.219.
    [16] MOORE M G and DAVENPORT M A. Analysis of wireless networks using Hawkes processes[C]. Proceedings of the 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, 2016: 1–5. doi: 10.1109/SPAWC.2016.7536795.
    [17] MOORE M G and DAVENPORT M A. A Hawkes’ eye view of network information flow[C]. Proceedings of 2016 IEEE Statistical Signal Processing Workshop, Palma de Mallorca, Spain, 2016: 1–5. doi: 10.1109/SSP.2016.7551779.
    [18] LAGHATE M and CABRIC D. Learning wireless networks’ topologies using asymmetric Granger causality[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 233–247. doi: 10.1109/JSTSP.2017.2787478.
    [19] LIU Zitong, DING Guoru, WANG Zheng, et al. Cooperative topology sensing of wireless networks with distributed sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 524–540. doi: 10.1109/TCCN.2020.3019601.
    [20] SONG Yehui, DING Guoru, SUN Jiachen, et al. Topology tracking of dynamic UAV wireless networks[J]. Chinese Journal of Aeronautics, 2022, 35(11): 322–335. doi: 10.1016/j.cja.2021.08.012.
    [21] HE Dejun, WU Xinrong, YU Lu, et al. Recognition of non-cooperative radio communication relationships based on transformer[C]. Proceedings of the 8th International Conference on Communication and Information Processing, Beijing, China, 2022: 175–183. doi: 10.1145/3571662.3571688.
    [22] LI Pengxue, ZHA Haoran, and LIN Yun. Topology inference for low-resource non-cooperative cluster networks based on deep learning[C]. 2023 International Conference on Ubiquitous Communication (Ucom), Xi'an, China, 2023: 361–366. doi: 10.1109/Ucom59132.2023.10257608.
    [23] KOIZUMI T, WASA Y, and KISHIDA M. Information transfer-based topology identification of dynamic multi-agent systems[J]. IFAC-PapersOnLine, 2023, 56(2): 3948–3953. doi: 10.1016/j.ifacol.2023.10.1333.
    [24] CHANG Liang, ZHANG Ying, and ZHANG Qi. Dynamic topology identification of wireless communication networks based on Hawkes process[C]. Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things, Xiamen, China, 2023: 693–700. doi: 10.1145/3603781.3603903.
    [25] SUN Rui. AITA: Accurate network topology recognition via active interception and topology analysis[C]. 2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 2024: 6–10. doi: 10.1109/ICETCI61221.2024.10594668.
    [26] GAO Haoyang, LI Ning, and XIE Yuancheng. Hidden-SAGE: For the inference of complex autonomous system business relationships involving hidden links[J]. Electronics, 2024, 13(9): 1617. doi: 10.3390/electronics13091617.
    [27] GUAN Faqian, ZHU Tianqing, TONG Hanjin, et al. Topology modification against membership inference attack in Graph Neural Networks[J]. Knowledge-Based Systems, 2024, 305: 112642. doi: 10.1016/j.knosys.2024.112642.
    [28] ZHENG Tongya, WANG Xinchao, FENG Zunlei, et al. Temporal aggregation and propagation graph neural networks for dynamic representation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 10151–10165. doi: 10.1109/TKDE.2023.3265271.
    [29] ANSARI S, ALATRANY A S, ALNAJJAR K A, et al. A survey of artificial intelligence approaches in blind source separation[J]. Neurocomputing, 2023, 561: 126895. doi: 10.1016/j.neucom.2023.126895.
    [30] XIE Lingnan, PENG Linning, ZHANG Junqing, et al. Radio frequency fingerprint identification for Internet of Things: A survey[J]. Security and Safety, 2024, 3: 2023022. doi: 10.1051/sands/2023022.
    [31] RUNGE J, NOWACK P, KRETSCHMER M, et al. Detecting and quantifying causal associations in large nonlinear time series datasets[J]. Science Advances, 2019, 5(11): eaau4996. doi: 10.1126/sciadv.aau4996.
    [32] HAWKES A G. Spectra of some self-exciting and mutually exciting point processes[J]. Biometrika, 1971, 58(1): 83–90. doi: 10.1093/biomet/58.1.83.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-12
  • 修回日期:  2025-09-15
  • 网络出版日期:  2025-09-20

目录

    /

    返回文章
    返回