高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向空天地网络的弹性语义通信

王文远 周明宇 王朝炜 许霁松 张云泽 庞明亮 江帆 徐乐西 张治

王文远, 周明宇, 王朝炜, 许霁松, 张云泽, 庞明亮, 江帆, 徐乐西, 张治. 面向空天地网络的弹性语义通信[J]. 电子与信息学报. doi: 10.11999/JEIT250077
引用本文: 王文远, 周明宇, 王朝炜, 许霁松, 张云泽, 庞明亮, 江帆, 徐乐西, 张治. 面向空天地网络的弹性语义通信[J]. 电子与信息学报. doi: 10.11999/JEIT250077
WANG Wenyuan, ZHOU Mingyu, WANG Chaowei, XU Jisong, ZHANG Yunze, PANG Mingliang, JIANG Fan, XU Lexi, ZHANG Zhi. Resilient Semantic Communication for Space-Air-Ground Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250077
Citation: WANG Wenyuan, ZHOU Mingyu, WANG Chaowei, XU Jisong, ZHANG Yunze, PANG Mingliang, JIANG Fan, XU Lexi, ZHANG Zhi. Resilient Semantic Communication for Space-Air-Ground Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250077

面向空天地网络的弹性语义通信

doi: 10.11999/JEIT250077 cstr: 32379.14.JEIT250077
基金项目: 国家自然科学基金(62471052)
详细信息
    作者简介:

    王文远:男,博士生,研究方向为无线通信、语义通信

    周明宇:男,博士,研究方向为无线通信

    王朝炜:男,博士,副教授,研究方向为下一代移动通信技术、无线传感器与物联网技术等

    许霁松:男,硕士生,研究方向为语义通信、无蜂窝网络

    张云泽:男,硕士生,研究方向为语义通信、无线通信

    庞明亮:男,博士生,研究方向为卫星通信、多址接入技术和资源管理等

    江帆:女,博士,教授,研究方向为基于人工智能的边缘计算及缓存技术、D2D通信技术、5G超密集异构网络中的无线资源管理等

    徐乐西:男,博士,高级工程师,研究方向为大数据算法研究及行业应用

    张治:男,教授,研究方向为无线通信、语义通信

    通讯作者:

    王朝炜 wangchaowei@bupt.edu.cn

  • 中图分类号: TN927

Resilient Semantic Communication for Space-Air-Ground Networks

Funds: The National Natural Science Foundation of China (62471052)
  • 摘要: 针对空天地网络中图像传输面临的带宽受限和信道损伤等挑战,该文提出一种弹性语义通信方案。该方案基于信息瓶颈(IB)理论构建了增强的率失真(RD)函数,采用Gumbel-Softmax方法和可变速率网络实现动态速率自适应,并设计了加权多重非对称高斯分布来表征不同语义特征的概率密度。在架构设计上,该方案采用注意力机制和残差学习,根据信噪比(SNR)要求自适应地选择网络模块,实现计算效率和传输可靠性之间的最佳权衡。实验表明,与传统方案相比,所提方案在信道带宽比(CBR)和重建质量方面均取得了显著提升,特别是在具有挑战性的信道条件下,表现出更强的鲁棒性和更高的图像保真度。
  • 图  1  图像语义通信方案的系统模型

    图  2  弹性语义通信的编码器结构

    图  3  CIFAR-100数据集弹性语义通信与SSCC性能对比

    图  6  Kodak24数据集弹性语义通信与DL方案性能对比

    图  4  Kodak24数据集弹性语义通信与SSCC性能对比

    图  5  CIFAR-100数据集弹性语义通信与DL方案性能对比

    图  7  弹性语义通信与DeepJSCC-V的效率对比

    图  8  弹性语义通信不同“单元”数性能对比

    图  9  弹性语义通信不同“单元”数效率对比

    图  10  图像重构效果对比

    1  JSC编码器的训练过程

     输入:训练数据集$\mathcal{X}$,批量大小$B$,学习率${\text{lr}}$,最大中间“单
     元”数量L
     输出:JSC编码器和解码器参数集合$({\boldsymbol{\theta }}_{\text{C}}^*,{\boldsymbol{\varphi }}_{\text{C}}^{\text{*}})$,SNR-l 映射向量${\boldsymbol{\varLambda }}$
     (1) 从$\mathcal{X}$中随机抽取一个数据批次${\boldsymbol{X}} = [{{\boldsymbol{x}}_1},{{\boldsymbol{x}}_2}, \cdots ,{{\boldsymbol{x}}_B}]$
     (2) 对于每个$l \in \{ 3,4, \cdots ,L\} $:
     (3)  对于批量中的每个数据样本${{\boldsymbol{x}}_i} \in {\boldsymbol{X}}$:
     (4)   生成得到SNR
     (5)   随机生成压缩率${R_i} \in \mathcal{U}(0.05,0.4)$
     (6)   提取语义特征${{\boldsymbol{z}}_i} = Q({E_{\text{C}}}({E_{\text{S}}}({{\boldsymbol{x}}_i}),{\gamma _i}))$
     (7)   生成具有SNR ${\gamma _i}$的加性高斯白噪声${{\boldsymbol{n}}_i}{\text{~}}\mathcal{C}\mathcal{N}(0,\sigma _2^i{\boldsymbol{I}})$
     (8)   计算接收的压缩信号${{{\tilde {\boldsymbol{z}}}}_i}$并重构${{\boldsymbol{\hat y}}_i}$
     (9)   使用解码器重构图像${{{\hat {\boldsymbol{x}}}}_i} = {D_{\text{S}}}({D_{\text{C}}}({{{\hat {\boldsymbol{y}}}}_i},{\gamma _i}))$
     (10) 结束循环
     (11) 计算平均损失$\mathcal{L}$
     (12) 更新映射向量${\boldsymbol{\varLambda }}$
     (13) 使用梯度下降法更新模型参数$({\boldsymbol{\theta }}_{\text{C}}^*,{\boldsymbol{\varphi }}_{\text{C}}^*)$
    下载: 导出CSV

    表  1  语义通信效用指标参数

    指标 图像重建任务中的数值
    ${\text{AC}}{{\text{C}}_{{\text{min}}}}$ 0
    ${\text{AC}}{{\text{C}}_{{\text{th}}}}$ 0.99
    ${\text{TI}}{{\text{M}}_{{\text{th}}}}$ 100 ms
    $\delta $ 6
    下载: 导出CSV

    表  2  训练中的关键参数设置

    数据集 CIFAR-100 WHU
    初始化学习率 1e–4 5e–5
    批量大小 128 256
    训练轮次 400 400
    优化器 Adam
    学习率调度器 poly
    权重参数 $\varepsilon $=0.015, $\eta $=0.5, $\lambda $=1
    下载: 导出CSV

    表  3  仿真参数配置

    参数名称 参数配置
    卫星高度 35 786 km
    等效卫星天线孔径 22 m
    3 dB波束宽度 0.401 1°
    卫星天线发射增益 51 dBi
    中心频率 2 GHz
    总带宽 30 MHz
    地面设备接收增益 39.7 dBi
    噪声温度 290 K
    噪声系数 7 dB
    噪声功率谱密度 1.38 × 10–23 ×290 W/Hz
    下载: 导出CSV

    表  4  复杂度比较

    方案 FLOPs 参数量(M)
    所提方案 5unit 5.797 11.700
    所提方案 4unit 3.942 8.160
    所提方案 3unit 2.088 4.620
    DeepJSCC-V 5.797 11.700
    ADJSCC 5.527 11.102
    下载: 导出CSV
  • [1] LIU Yalin, DAI Hongning, WANG Qubeijian, et al. Space-air-ground integrated networks: Spherical stochastic geometry-based uplink connectivity analysis[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(5): 1387–1402. doi: 10.1109/JSAC.2024.3365891.
    [2] CHEN Qian, WU Chenyu, HAN Shuai, et al. Intersatellite-link-enhanced transmission scheme toward aviation IoT in SAGIN[J]. IEEE Internet of Things Journal, 2025, 12(9): 11812–11826. doi: 10.1109/JIOT.2024.3519659.
    [3] MAO Bomin, ZHOU Xueming, LIU Jiajia, et al. Digital twin satellite networks toward 6G: Motivations, challenges, and future perspectives[J]. IEEE Network, 2024, 38(1): 54–60. doi: 10.1109/MNET.2023.3332895.
    [4] MAHBOOB S and LIU Lingjia. Revolutionizing future connectivity: A contemporary survey on AI-empowered satellite-based non-terrestrial networks in 6G[J]. IEEE Communications Surveys & Tutorials, 2024, 26(2): 1279–1321. doi: 10.1109/COMST.2023.3347145.
    [5] WALLACE G K. The JPEG still picture compression standard[J]. Communications of the ACM, 1991, 34(4): 30–44. doi: 10.1145/103085.103089.
    [6] MARCELLIN M W, GORMISH M J, BILGIN A, et al. An overview of JPEG-2000[C]. DCC 2000. Data Compression Conference, Snowbird, USA, 2000: 523–541. doi: 10.1109/DCC.2000.838192.
    [7] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
    [8] RICHARDSON T J, SHOKROLLAHI M A, and URBANKE R L. Design of capacity-approaching irregular low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 619–637. doi: 10.1109/18.910578.
    [9] VANGALA H, VITERBO E, and HONG Y. A comparative study of polar code constructions for the AWGN channel[J]. arXiv preprint arXiv: 1501.02473, 2015. doi: 10.48550/arXiv.1501.02473.
    [10] WEITHOFFER S, NOUR C A, WEHN N, et al. 25 years of turbo codes: From Mb/s to beyond 100 Gb/s[C]. 2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC), Hong Kong, China, 2018: 1–6. doi: 10.1109/ISTC.2018.8625377.
    [11] QIN Zhijin, TAO Xiaoming, LU Jianhua, et al. Semantic communications: Principles and challenges[J]. arXiv preprint arXiv: 2201.01389, 2021. doi: 10.48550/arXiv.2201.01389.
    [12] WANG Chaowei, LI Yehao, GAO Feifei, et al. Adaptive semantic-bit communication for extended reality interactions[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(5): 1080–1092. doi: 10.1109/JSTSP.2023.3310654.
    [13] YU Lei, LI Houqiang, and LI Weiping. Wireless scalable video coding using a hybrid digital-analog scheme[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(2): 331–345. doi: 10.1109/TCSVT.2013.2273675.
    [14] MA Yuanliang, ZHANG Qunfei, and WANG Honglei. 6G: Ubiquitously extending to the vast underwater world of the oceans[J]. Engineering, 2022, 8: 12–17. doi: 10.1016/j.eng.2021.07.017.
    [15] BOURTSOULATZE E, KURKA D B, and GÜNDÜZ D. Deep joint source-channel coding for wireless image transmission[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3): 567–579. doi: 10.1109/TCCN.2019.2919300.
    [16] SUN Lunan, YANG Yang, CHEN Mingzhe, et al. Adaptive information bottleneck guided joint source and channel coding for image transmission[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2628–2644. doi: 10.1109/JSAC.2023.3288238.
    [17] LIU Fangfang, SUN Zhengfen, YANG Yang, et al. Rate-adaptable multitask-oriented semantic communication: An extended rate-distortion theory-based scheme[J]. IEEE Internet of Things Journal, 2024, 11(9): 15557–15570. doi: 10.1109/JIOT.2024.3350656.
    [18] DAI Jincheng, ZHANG Ping, NIU Kai, et al. Communication beyond transmitting bits: Semantics-guided source and channel coding[J]. IEEE Wireless Communications, 2023, 30(4): 170–177. doi: 10.1109/MWC.017.2100705.
    [19] DAI Jincheng, WANG Sixian, TAN Kailin, et al. Nonlinear transform source-channel coding for semantic communications[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(8): 2300–2316. doi: 10.1109/JSAC.2022.3180802.
    [20] XIAO Zixuan, YAO Shengshi, DAI Jincheng, et al. Wireless deep speech semantic transmission[C]. ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10094680.
    [21] LIU Jiakun, SHAO Shuo, ZHANG Wenyi, et al. An indirect rate-distortion characterization for semantic sources: General model and the case of gaussian observation[J]. IEEE Transactions on Communications, 2022, 70(9): 5946–5959. doi: 10.1109/TCOMM.2022.3194978.
    [22] ZHANG Ping, XU Wenjun, GAO Hui, et al. Toward wisdom-evolutionary and primitive-concise 6G: A new paradigm of semantic communication networks[J]. Engineering, 2022, 8: 60–73. doi: 10.1016/j.eng.2021.11.003.
    [23] TONG Wanjie, LIU Fangfang, SUN Zhengfen, et al. Image semantic communications: An extended rate-distortion theory based scheme[C]. 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 2022: 1723–1728. doi: 10.1109/GCWkshps56602.2022.10008733.
    [24] 3GPP. 3GPP TR 38.811 Study on New Radio (NR) to support non-terrestrial networks (Release 15)[S]. 3GPP, 2010.
    [25] ZHANG Wenyu, ZHANG Haijun, MA Hui, et al. Predictive and adaptive deep coding for wireless image transmission in semantic communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5486–5501. doi: 10.1109/TWC.2023.3234408.
    [26] JANG E, GU Shixiang, POOLE B. Categorical reparameterization with gumbel-softmax[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
    [27] NACEREDDINE N, TABBONE S, ZIOU D, et al. Asymmetric generalized Gaussian mixture models and EM algorithm for image segmentation[C]. 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010: 4557–4560. doi: 10.1109/ICPR.2010.1107.
    [28] LIU Fangfang, TONG Wanjie, YANG Yang, et al. Task-oriented image semantic communication based on rate-distortion theory[J]. arXiv preprint arXiv: 2201.10929, 2022. doi: 10.48550/arXiv.2201.10929.
    [29] 郑远, 王凤玉, 许文俊. 语义通信性能评估体系及指标[J]. 中兴通讯技术, 2023, 29(2): 46–53. doi: 10.12142/ZTETJ.202302010.

    ZHENG Yuan, WANG Fengyu, and XU Wenjun. Performance evaluation systems and metrics for semantic communications[J]. ZTE Technology Journal, 2023, 29(2): 46–53. doi: 10.12142/ZTETJ.202302010.
    [30] XU Jialong, AI Bo, CHEN Wei, et al. Wireless image transmission using deep source channel coding with attention modules[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 2315–2328. doi: 10.1109/TCSVT.2021.3082521.
    [31] 3GPP. 3GPP TR 38.821 Solutions for NR to support non-terrestrial networks (NTN) (Release 16)[S]. Washington: 3GPP, 2019.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  89
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-12
  • 修回日期:  2025-07-02
  • 网络出版日期:  2025-07-14

目录

    /

    返回文章
    返回