高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于串联阵列型磁电天线的甚低频磁感应通信系统设计

张锋 李佳燃 田玉晓 徐梓洋 宫兆前 庄鑫

张锋, 李佳燃, 田玉晓, 徐梓洋, 宫兆前, 庄鑫. 基于串联阵列型磁电天线的甚低频磁感应通信系统设计[J]. 电子与信息学报. doi: 10.11999/JEIT250065
引用本文: 张锋, 李佳燃, 田玉晓, 徐梓洋, 宫兆前, 庄鑫. 基于串联阵列型磁电天线的甚低频磁感应通信系统设计[J]. 电子与信息学报. doi: 10.11999/JEIT250065
ZHANG Feng, LI Jiaran, TIAN Yuxiao, XU Ziyang, GONG Zhaoqian, ZHUANG Xin. Design of a Very Low Frequency Magnetic Induction Communication System Based on a Series-Array Magnetoelectric Antenna[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250065
Citation: ZHANG Feng, LI Jiaran, TIAN Yuxiao, XU Ziyang, GONG Zhaoqian, ZHUANG Xin. Design of a Very Low Frequency Magnetic Induction Communication System Based on a Series-Array Magnetoelectric Antenna[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250065

基于串联阵列型磁电天线的甚低频磁感应通信系统设计

doi: 10.11999/JEIT250065
基金项目: 国家自然科学基金(62271470),国家重点研发计划(2021YFA0716500)
详细信息
    作者简介:

    张锋:男, 副研究员,研究方向为超宽带雷达技术,超宽带天线技术,磁感应通信技术等

    李佳燃:男,硕士生,研究方向为磁感应通信技术, FPGA通信算法开发等

    田玉晓:女,硕士生,研究方向为超宽带天线技术,小型化天线等

    徐梓洋:男,硕士生,研究方向为声谐振器件、基于压电磁致伸缩的磁电传感器件开发等

    宫兆前:男,助理研究员,研究方向为数字信号处理、信息与通信算法研究等

    庄鑫:男,副研究员,研究方向为高灵敏度磁场传感器,磁电复合材料/器件,新型电磁辐射与探测技术等

    通讯作者:

    张锋 zhangfeng002723@aircas.ac.cn

  • 中图分类号: TN914; TN92

Design of a Very Low Frequency Magnetic Induction Communication System Based on a Series-Array Magnetoelectric Antenna

Funds: The National Natural Science Foundation of China (62271470), The National Key R&D Program of China (2021YFA0716500)
  • 摘要: 磁电(ME)天线具有高能量转换效率、小尺寸和轻量化的优势,在便携式跨介质通信系统中具有良好的应用前景。目前,ME天线存在辐射强度较低的问题,限制了系统的通信距离。为解决这一问题,该文设计了一种基于ME天线阵列的甚低频(VLF)通信系统。该系统的发射天线是由7个ME天线单元串联组成的发射阵列,有效提升了辐射强度。ME天线单元采用经过表面改性的Fe80Si9B11层压材料作为磁致伸缩单元,并结合Pb(Zr,Ti)O3(PZT)压电陶瓷构成三明治结构,增强了磁电耦合效率。对天线阵列施加高驱动电压,可在1 m距离处产生165 nT的磁场强度。基于该天线阵列的便携式磁通信系统采用二进制振幅键控(BASK)调制技术,在高背景噪声的实验室环境中成功实现了11.4 m的无线通信,码速率为50 bit/s。理论分析表明,该系统的最大误码率为0.12%,证明了其良好的抗噪能力。研究结果表明,基于串联阵列型磁电(ME)天线的通信系统在提升通信距离具有显著优势,为低频通信技术的发展提供了新的思路。
  • 图  1  不同退火温度和时间的Fe80Si9B11带材参数

    图  2  磁电复合材料的三明治结构

    图  3  磁电天线阵列内部结构图(部分)

    图  4  接收线圈天线的转换系数测量实验

    图  5  ME天线阵列辐射磁感应强度测量实验

    图  6  基于串联型ME天线阵列的磁通信系统框图与设备

    图  7  磁通信系统的ASK调制解调方案

    图  8  不同距离下磁通信系统的发射与接收信号

    图  9  VLF磁通信系统的通信实验结果和实验环境

    图  10  环境噪声谱密度与相干解调 ASK 通信系统的误码率/信噪比分析

    表  1  基于不同机械天线的低频通信系统性能

    天线类型 fcarrier
    (Hz)
    Vrad
    (cm3)
    ΔB a 比特率
    (bit/s)
    通信距离 调制方式 参考文献
    旋转永磁体 320 在3 m处7 nT 12.5 5 m FSK [10]
    旋转永磁体 440 0.64 在1 m处0.1 µT 214 ASK [16]
    压电谐振型 33 230 ~50.24 在6 m处40 fT 60 ASK/FSK [18]
    磁电谐振型 27 750 0.04 在6.5 m处43 pT 18 000 6.5 m(接收线圈直径49 mm) PSK [19]
    磁电谐振型 18 100 在0.5 m处3.8 nT 2 000 0.1m ASK [12]
    磁电谐振型 21 200 3.38 在1 m处112 nT 300 18 m (接收线圈直径200 mm) ASK/PSK [20]
    磁电谐振型 27 200 7.07 在1 m处
    BMAX =165 nT
    50 11.4 m(接收线圈直径50 mm,长度120 mm) ASK 本文
    aBmax 表示发射天线辐射的最大磁感应强度。
    下载: 导出CSV
  • [1] WHEELER H. Fundamental limitaions of a small VLF antenna for submarines[J]. IRE Transactions on Antennas and Propagation, 1958, 6(1): 123–125. doi: 10.1109/TAP.1958.1144550.
    [2] CELLA U M, JOHNSTONE R, and SHULEY N. Electromagnetic wave wireless communication in shallow water coastal environment: Theoretical analysis and experimental results[C]. Proceedings of the 4th International Workshop on Underwater Networks, Berkeley, USA, 2009: 9. doi: 10.1145/1654130.1654139.
    [3] SUN Zhi and AKYILDIZ I F. Magnetic induction communications for wireless underground sensor networks[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(7): 2426–2435. doi: 10.1109/TAP.2010.2048858.
    [4] HAYAKAWA M. VLF/LF radio sounding of ionospheric perturbations associated with earthquakes[J]. Sensors, 2007, 7(7): 1141–1158. doi: 10.3390/s7071141.
    [5] GRIFFITHS D J and INGLEFIELD C. Introduction to electrodynamics[J]. American Journal of Physics, 2005, 73(6): 574–574. doi: 10.1119/1.4766311.
    [6] KING R W P. Lateral electromagnetic waves from a horizontal antenna for remote sensing in the ocean[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(10): 1250–1255. doi: 10.1109/8.43533.
    [7] BICKFORD J A, MCNABB R S, WARD P A, et al. Low frequency mechanical antennas: Electrically short transmitters from mechanically-actuated dielectrics[C]. Proceedings of 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 1475–1476. doi: 10.1109/APUSNCURSINRSM.2017.8072780.
    [8] BARANI N and SARABANDI K. Mechanical antennas: Emerging solution for Very-Low Frequency (VLF) communication[C]. Proceedings of 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 95–96. doi: 10.1109/APUSNCURSINRSM.2018.8608412.
    [9] WHEELER H. Small antennas[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(4): 462–469. doi: 10.1109/TAP.1975.1141115.
    [10] SUN Faxiao, ZHANG Feng, MA Xiaoya, et al. Research on ultra-low-frequency communication based on the rotating shutter antenna[J]. Electronics, 2022, 11(4): 596. doi: 10.3390/ELECTRONICS11040596.
    [11] DU Yongjun, XU Yiwei, WU Jingen, et al. Very-low-frequency magnetoelectric antennas for portable underwater communication: Theory and experiment[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(3): 2167–2181. doi: 10.1109/TAP.2022.3233665.
    [12] CHENG Jiawei, JIAO Jie, FU Shifeng, et al. Ultra-high baud rate VLF magnetoelectric antenna based on Rosen-type composite[J]. Applied Physics Letters, 2023, 123(7): 072903. doi: 10.1063/5.0167170.
    [13] ZHUANG Xin, XU Xin, ZHANG Xu, et al. Tailoring the magnetomechanical power efficiency of metallic glasses for magneto-electric devices[J]. Journal of Applied Physics, 2022, 132(10): 104502. doi: 10.1063/5.0098282.
    [14] KACZKOWSKI Z. Magnetomechanical coupling in transducers[J]. Archives of Acoustics, 1981, 6(4): 385–400.
    [15] COAKLEY K J, SPLETT J D, JANEZIC M D, et al. Estimation of Q-factors and resonant frequencies[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(3): 862–868. doi: 10.1109/TMTT.2003.808578.
    [16] REZAEI H, KHILKEVICH V, YONG Shaohui, et al. Mechanical magnetic field generator for communication in the ULF range[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2332–2339. doi: 10.1109/TAP.2019.2955069.
    [17] BURCH H C, GARRAUD A, MITCHELL M F, et al. Experimental generation of ELF radio signals using a rotating magnet[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6265–6272. doi: 10.1109/TAP.2018.2869205.
    [18] HASSANIEN A E, BREEN M, LI M H, et al. Acoustically driven electromagnetic radiating elements[J]. Scientific Reports, 2020, 10(1): 17006. doi: 10.1038/s41598-020-73973-6.
    [19] XU Yiwei, WU Jingen, DU Yongjun, et al. A portable VLF magnetoelectric transmitter with high-rate phase modulation[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(4): 3134–3149. doi: 10.1109/TAP.2024.3363466.
    [20] CHU Zhaoqiang, MAO Zhineng, SONG Kaixin, et al. A multilayered magnetoelectric transmitter with suppressed nonlinearity for portable VLF communication[J]. Research, 2023, 6: 0208. doi: 10.34133/research.0208.
    [21] BALANIS C A. Advanced Engineering Electromagnetics[M]. 2nd ed. Hoboken, New Jersey, USA: John Wiley & Sons, 2012. (查阅网上资料, 未找到本条文献页码信息, 请补充).
    [22] 樊昌信, 曹丽娜. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012: 200–210.

    FAN Changxin and CAO Lina. Principles of Communication[M]. 7th ed. Beijing: National Defense Industry Press, 2012: 200–210. (查阅网上资料, 未找到本条文献英文信息, 请确认).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-12
  • 修回日期:  2025-05-28
  • 网络出版日期:  2025-06-10

目录

    /

    返回文章
    返回