高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于国密算法的隐私集合求交协议设计

黄海 关志博 于斌 马超 杨锦波 马项羽

黄海, 关志博, 于斌, 马超, 杨锦波, 马项羽. 基于国密算法的隐私集合求交协议设计[J]. 电子与信息学报, 2025, 47(8): 2757-2767. doi: 10.11999/JEIT250050
引用本文: 黄海, 关志博, 于斌, 马超, 杨锦波, 马项羽. 基于国密算法的隐私集合求交协议设计[J]. 电子与信息学报, 2025, 47(8): 2757-2767. doi: 10.11999/JEIT250050
HUANG Hai, GUAN Zhibo, YU Bin, MA Chao, YANG Jinbo, MA Xiangyu. Design of Private Set Intersection Protocol Based on National Cryptographic Algorithms[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2757-2767. doi: 10.11999/JEIT250050
Citation: HUANG Hai, GUAN Zhibo, YU Bin, MA Chao, YANG Jinbo, MA Xiangyu. Design of Private Set Intersection Protocol Based on National Cryptographic Algorithms[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2757-2767. doi: 10.11999/JEIT250050

基于国密算法的隐私集合求交协议设计

doi: 10.11999/JEIT250050 cstr: 32379.14.JEIT250050
基金项目: 黑龙江省重点研发计划(2022ZX01A36),哈尔滨市制造业科技创新人才项目(2022CXRCCG004),国家重点研发计划(2023YFB4403500)
详细信息
    作者简介:

    黄海:男,博士,教授,研究方向为信息安全、可重构技术、集成电路设计等

    关志博:男,博士生,研究方向为信息安全、安全计算技术,密码算法等

    于斌:男,硕士,副教授,研究方向为密码算法、密码芯片设计和数字集成电路设计等

    马超:男,博士,教授,研究方向为服务计算与服务推荐、隐私计算等

    杨锦波:男,博士生,研究方向为信息安全、集成电路设计等

    马项羽:男,硕士生,研究方向为信息安全、集成电路设计等

    通讯作者:

    于斌 yubin@hrbust.edu.cn

  • 中图分类号: TN918; TP301

Design of Private Set Intersection Protocol Based on National Cryptographic Algorithms

Funds: The Key Research and Development Program of Heilongjiang Province (2022ZX01A36), Harbin Manufacturing Science and Technology Innovation Talent Project (2022CXRCCG004), The National key Research and Development Plan Project (2023YFB4403500)
  • 摘要: 现有的隐私集合求交协议存在安全漏洞不可控的风险,此外计算效率不能满足实际应用需求。该文提出一种基于国密算法SM2和SM3的隐私集合求交协议SM-PSI,采用国产安全芯片对协议中的关键算法如含数据加密、非交互零知识证明等进行了硬件加速设计,通过理论分析证明了协议在半诚实敌手模型下的安全性。使用模拟数据集进行实验,结果表明,在相同的安全等级下,所提协议通过软硬件协同优化,其计算效率显著优于现有方法,计算速度比CPU运行最优方案SpOT-Light的PSI协议平均提升4.2倍,比DH-IPP方案平均提升6.3倍。该研究为实现我国网络空间安全自主可控提供了重要支撑。
  • 图  1  SM-PSI框架流程图

    图  2  软硬件协同架构图

    图  3  加速比随ID数量变化

    1  基于国密算法的隐私集合求交集协议流程

     输入:Alice和Bob分别输入数据集合$ {U_{\text{A}}}{\text{ = \{ }}{U_{{\text{A1}}}}{\text{,}} U_{{\text{A2}}}{\text{,}} \cdots {\text{,}}{U_{{\text{A}}i}}{\text{\} }} $和$ {U_{\text{B}}}{\text{ = \{ }}{U_{{\text{B1}}}}{\text{,}}{U_{{\text{B2}}}}{\text{,}} \cdots {\text{,}}{U_{{\text{B}}j}}{\text{\} }} $
     输出:交集$ {U_{\text{A}}} \cap {U_{\text{B}}} $
     准备:本文假设Alice和Bob视作安全多方计算协议中的两个参与者,Alice和Bob选择同一套SM2椭圆曲线参数,包括:选择大素数P构建
     有限域${F_P}$,有限域${F_P}$含P个元素;在有限域$ {F}_{P} $上定义椭圆曲线$E({F_P})$,选择生成元G为椭圆曲线$E({F_P})$的q阶基点$({X_G},{Y_G})$,生成元
     G的阶为n;其中,当$k \in Z_q^*$,$[k]G$表示使用椭圆曲线标量乘法计算基点Gk倍点,密码杂凑算法选用SM3,$x\parallel y$代表字节串拼接。
     Alice和Bob方按照以下方案步骤进行协同计算出两方加密值而不会泄露其他信息:
     (1) Bob方进行如下操作:
     (a) Bob方生成随机数作为该方案私钥$ {d_{\text{B}}} \in Z_{q-1}^* $,私钥$ {d}_{{\mathrm{B}}} $仅由Bob方持有;
     (b) 计算公钥${P_{\text{B}}} = [{d_{\text{B}}}]G$,Bob方公开公钥信息。
     (2) Alice方进行如下操作:
     (a) 接收Bob方发送的公钥${P_{\text{B}}}$计算椭圆曲线点$S = [h]{P_{\text{B}}}$,其中$h = 1$,若$S$为无穷远点,则报错并退出;
     (b) 在本次隐私集合求交过程中,生成一个随机数$ k \in Z_{q-1}^* $,计算${c_1} = [k]G = ({x_1},{y_1})$;
     (c) 计算混淆点$[k]{P_{\text{B}}} = ({x_2},{y_2})$;
     (d) 计算${c_2}_{{\text{A}}i} = {\text{Hash(}}{x_2}\parallel {U_{{\text{A}}i}}\parallel {y_2}{\text{)}}$,获得密文集合${c_2}_{\text{A}} = \left\{ {{c_{21}},{c_{22}}, \cdots ,{c_{2{\text{A}}i}}} \right\}$;
     (e) Alice方向$ {{F}}_{{\text{com-ZK}}}^{{R}} $发送指令$({\text{prove,sid||}}1,{c_1},k)$。
     (3) Bob方进行如下操作:
     (a) Bob方接收$ {{F}}_{{\text{com-ZK}}}^{{R}} $返回的消息$({\text{proof-receipt,sid||}}1)$。
     (4) Alice方进行如下操作
     (a) Alice方选择随机数r,计算$R = [r]G$;
     (b) Alice方向$ {{F}}_{{\text{com-ZK}}}^{{R}} $发送指令$({\text{response-proof,sid||}}1)$
     (c) 生成挑战$c' = {\mathrm{Hash}}(R,{c_1},G)$,计算$s = r + {{k}}c'$,生成${c_3} = (R,s)$,Alice方将$c = ({c_1},{c_3},{c_2}_{\text{A}})$发送Bob方;
     (d) 零知识证明:Alice方通过零知识证明$(G,R,{c_1}) \in {{{R}}_{{\text{DL}}}}$。
     (5) Bob方进行如下操作:
     (a) 接受Alice方密文集合$c = ({c_1},{c_3},{c_2}_{\text{A}})$;
     (b) Bob方利用${c_3}$证明${c_1} = [k]G = ({x_1},{y_1})$,生成验证$c' = {\text{Hash}}(R,{c_1},G)$;
     (c) Bob方接收$ {{F}}_{{\text{com-ZK}}}^{{R}} $返回的消息$({\text{response-proof,sid||}}1,{c_1})$,若没有接收到则中止协议;
     (d) Bob方接受零知识证明$(G,R,{c_1}) \in {{{R}}_{{\text{DL}}}}$,否则中止协议;
     (e) 计算并检查$[s]G = R + [c']{c_1}$是否成立;
     (f) 若成立,则${c_1} = [k]G = ({x_1},{y_1})$,利用私钥$ {d_{\text{B}}} \in Z_{q-1}^* $,计算$[{d_{\text{B}}}]{c_1} = [{d_{\text{B}}}][k]G = ({x_2},{y_2})$;
     (g) 计算$c_{{2\text{B}}_j} = {\text{Hash(}}{x_2}\parallel {U_{{\text{B}}j}}\parallel {y_2}{\text{)}}$,获得密文集合${c_2}_{\text{B}} = \left\{ {{c_{21}},{c_{22}}, \cdots ,{c_{2{\text{B}}j}}} \right\}$;
     (h) 得到交集计算结果$ I = {c_{2{\text{A}}}} \cap {c_{2{\text{B}}}} $,双方获得交集结果。
    下载: 导出CSV

    表  1  PSI协议架构对比

    PSI协议 算法架构 硬件架构 数据参与通信轮数
    SpOT-Light[13] 稀疏OT 云服务器搭载2.5GHz Intel Xeon vCPU*2 3
    DH-IPP[9] ECDH SHA256 英特尔至强铂金 8369B CPU 2
    FLASH-RSA[11] RSA SHA256 赛灵思 VU13P FPGA 2
    本文 SM2 SM3 沐创 可重构RSP S20芯片 1
    下载: 导出CSV

    表  2  PSI协议复杂度比较

    PSI协议 计算复杂度 通信复杂度 类型
    SpOT-Light[13] $ t{\text{lo}}{{\text{g}}_{\text{2}}}^2t $ $ 2(\lambda + {\log _2}({N_X}{N_Y})){N_X} + \ell (1 + 1/\lambda ){N_Y} $ 半诚实
    DH-IPP[9] $2t{\text{pk}}$ $ \left( {\rho + {{\log }_2}({N_X}{N_Y})} \right){N_X} + \phi {N_Y} + \phi $ 半诚实
    FLASH-RSA[11] $2t{\text{pk}}$ $t\rho + {N_X}\nu $ 半诚实
    本文 $t + 9{\text{pk}}$ $3\phi + {N_X}\nu $ 半诚实
    下载: 导出CSV

    表  3  10 Gbps广域网下PSI协议运行平均时间(s)

    ${n_1}$ 212 216 220 224
    ${n_2}$ 212 216 220 224
    SpOT-Light[13] 0.21 0.77 7.60 146.10
    DH-IPP[9] 0.35 1.04 11.00 188.60
    FLASH-RSA[11] 1.63 27.88 435.60 -
    本文(软硬协同) 0.06 0.18 1.68 27.47
    相比最优平均提升(%) 250.00 327.78 352.38 431.84
    下载: 导出CSV
  • [1] ZHAO Chuan, ZHAO Shengnan, ZHAO Minghao, et al. Secure multi-party computation: Theory, practice and applications[J]. Information Sciences, 2019, 476: 357–372. doi: 10.1016/j.ins.2018.10.024.
    [2] HE Yuanyuan, TAN Xiaoyu, NI Jianbing, et al. Differentially private set intersection for asymmetrical ID alignment[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3479–3494. doi: 10.1109/TIFS.2022.3207911.
    [3] 高莹, 谢雨欣, 邓煌昊, 等. 面向纵向联邦学习的隐私保护数据对齐框架[J]. 电子与信息学报, 2024, 46(8): 3419–3427. doi: 10.11999/JEIT231234.

    GAO Ying, XIE Yuxin, DENG Huanghao, et al. Privacy-preserving data alignment framework for vertical federated learning[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3419–3427. doi: 10.11999/JEIT231234.
    [4] ZHANG Liping, GAO Weihao, CHEN Shukai, et al. A privacy-preserving proximity testing using private set intersection for vehicular ad-hoc networks[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 7373–7383. doi: 10.1109/TII.2021.3133566.
    [5] LAI Chengzhe, ZHANG Hanyue, LU Rongxing, et al. Privacy-preserving medical data sharing scheme based on two-party cloud-assisted PSI[J]. IEEE Internet of Things Journal, 2024, 11(9): 15855–15868. doi: 10.1109/JIOT.2024.3350029.
    [6] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32918.4-2016 信息安全技术 SM2椭圆曲线公钥密码算法 第4部分: 公钥加密算法[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China. GB/T 32918.4-2016 Information security technology-public key cryptographic algorithm SM2 based on elliptic curves-Part4: Public key encryption algorithm[S]. Beijing: Standards Press of China, 2017.
    [7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32905-2016 信息安全技术 SM3密码杂凑算法[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China. GB/T 32905-2016 Information security techniques-SM3 cryptographic hash algorithm[S]. Beijing: Standards Press of China, 2017.
    [8] MEADOWS C. A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party[C]. 1986 IEEE Symposium on Security and Privacy, Oakland, USA, 1986: 134–137. doi: 10.1109/SP.1986.10022.
    [9] WU Guiming, HE Qianwen, JIANG Jiali, et al. Topgun: An ECC accelerator for private set intersection[J]. ACM Transactions on Reconfigurable Technology and Systems, 2023, 16(4): 52. doi: 10.1145/3603114.
    [10] DACHMAN-SOLED D, MALKIN T, RAYKOVA M, et al. Efficient robust private set intersection[J]. International Journal of Applied Cryptography, 2012, 2(4): 289–303. doi: 10.1504/IJACT.2012.048080.
    [11] ZHANG Junxue, CHENG Xiaodian, WANG Wei, et al. FLASH: Towards a high-performance hardware acceleration architecture for cross-silo federated learning[C]. The 20th USENIX Symposium on Networked Systems Design and Implementation, Boston, USA, 2023: 1057–1079.
    [12] PINKAS B, SCHNEIDER T, and ZOHNER M. Faster private set intersection based on OT extension[C]. The 23rd USENIX Conference on Security Symposium, San Diego, USA, 2014: 797–812.
    [13] PINKAS B, ROSULEK M, TRIEU N, et al. SpOT-light: Lightweight private set intersection from sparse OT extension[C]. The 39th Annual International Cryptology Conference on Advances in Cryptology, Cham, Germany, 2019: 401–431. doi: 10.1007/978-3-030-26954-8_13.
    [14] BAY A, ERKIN Z, HOEPMAN J H, et al. Practical multi-party private set intersection protocols[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 1–15. doi: 10.1109/TIFS.2021.3118879.
    [15] 于斌, 黄海, 刘志伟, 等. 高性能Ed25519算法硬件架构设计与实现[J]. 电子与信息学报, 2021, 43(7): 1821–1827. doi: 10.11999/JEIT200876.

    YU Bin, HUANG Hai, LIU Zhiwei, et al. High-performance hardware architecture design and implementation of Ed25519 algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1821–1827. doi: 10.11999/JEIT200876.
    [16] 刘志伟, 张琦, 黄海, 等. 基于比特重组快速模约简的高面积效率椭圆曲线标量乘法器设计[J]. 电子与信息学报, 2024, 46(1): 344–352. doi: 10.11999/JEIT221446.

    LIU Zhiwei, ZHANG Qi, HUANG Hai, et al. Design of high area efficiency elliptic curve scalar multiplier based on fast modulo reduction of bit reorganization[J]. Journal of Electronics & Information Technology, 2024, 46(1): 344–352. doi: 10.11999/JEIT221446.
    [17] HAZAY C and NISSIM K. Efficient set operations in the presence of malicious adversaries[J]. Journal of Cryptology, 2012, 25(3): 383–433. doi: 10.1007/s00145-011-9098-x.
    [18] DE CRISTOFARO E and TSUDIK G. Practical private set intersection protocols with linear complexity[C]. The 14th International Conference on Financial Cryptography and Data Security, Berlin, Heidelberg, Germany, 2010: 143–159. doi: 10.1007/978-3-642-14577-3_13.
    [19] RABIN M O. Transaction protection by beacons[J]. Journal of Computer and System Sciences, 1983, 27(2): 256–267. doi: 10.1016/0022-0000(83)90042-9.
    [20] PINKAS B, SCHNEIDER T, SEGEV G, et al. Phasing: Private set intersection using permutation-based hashing[C]. The 24th USENIX Security Symposium, Washington, USA, 2015: 515–530.
    [21] 唐飞, 凌国玮, 单进勇. 基于国密SM2和SM9的加法同态加密方案[J]. 密码学报, 2022, 9(3): 535–549. doi: 10.13868/j.cnki.jcr.000532.

    TANG Fei, LING Guowei, and SHAN Jinyong. Additive homomorphic encryption schemes based on SM2 and SM9[J]. Journal of Cryptologic Research, 2022, 9(3): 535–549. doi: 10.13868/j.cnki.jcr.000532.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  135
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-20
  • 修回日期:  2025-07-02
  • 网络出版日期:  2025-07-07
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回