高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能超表面赋能的D2D隐蔽通信策略研究

吕璐 郑彭玮 杨龙 陈健

吕璐, 郑彭玮, 杨龙, 陈健. 智能超表面赋能的D2D隐蔽通信策略研究[J]. 电子与信息学报. doi: 10.11999/JEIT250045
引用本文: 吕璐, 郑彭玮, 杨龙, 陈健. 智能超表面赋能的D2D隐蔽通信策略研究[J]. 电子与信息学报. doi: 10.11999/JEIT250045
LV Lu, ZHENG Pengwei, YANG Long, CHEN Jian. Reconfigurable Intelligent Surface-empowered Covert Communication Strategies for D2D Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250045
Citation: LV Lu, ZHENG Pengwei, YANG Long, CHEN Jian. Reconfigurable Intelligent Surface-empowered Covert Communication Strategies for D2D Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250045

智能超表面赋能的D2D隐蔽通信策略研究

doi: 10.11999/JEIT250045
基金项目: 国家自然科学基金(62271368, 62371367),陕西省重点研发计划(2023-ZDLGY-50),中央高校基本科研业务费(QTZX23066)
详细信息
    作者简介:

    吕璐:男,副教授,研究方向为非正交多址接入、智能超表面和隐蔽通信等

    郑彭玮:男,硕士生,研究方向为智能超表面及隐蔽通信

    杨龙:男,教授,研究方向为隐蔽通信、无线物理层安全和协作通信等

    陈健:男,教授,研究方向为协作通信、智能超表面和隐蔽通信等

    通讯作者:

    吕璐 lulv@xidian.edu.cn

  • 11) 体现了利用RIS实现隐蔽通信的低成本特性:通过引入RIS的相移随机性,无需额外干扰源或不确定性源为监听者功率检测创造不确定性。
  • 22)当监听者可以SIC解码信号时,本文设计方案的性能会受到一定的影响。但本文提出的方案仍能在一定程度上保证安全性:优化RIS相移可以使得合法信道强于窃听信道,易使得监听者的SIC解码失败。监听者对蜂窝用户的信号进行SIC存在一定困难:难以获知蜂窝用户信号的先验信息(如调制方式、编码序列等);无法获知RIS相移;与蜂窝用户进行同步存在困难。综上所述,本文假设监听者处使用能量检测,无法使用SIC解码具有一定的合理性。3)本文信道模型考虑存在直射径以及其他多径分量,故小尺度衰落服从莱斯分布。
  • 34)人工噪声干扰方案的复杂度通常为\begin{document}$O(M)^3 $\end{document}M为噪声源的天线数量,所提方案在算法复杂度基本一致的情况下,隐蔽性能明显优于人工噪声干扰方案。
  • 中图分类号: TN92

Reconfigurable Intelligent Surface-empowered Covert Communication Strategies for D2D Systems

Funds: The National Natural Science Foundation of China (62271368, 62371367); The Key Research and Development Program of Shaanxi (2023-ZDLGY-50); The Fundamental Research Funds for the Central Universities (QTZX23066)
  • 摘要: 为了应对目前设备到设备 (D2D) 隐蔽通信研究中引入额外不确定性源而带来高成本、高功耗的问题,该文提出一种智能超表面 (RIS) 赋能的D2D隐蔽传输方法。该方法借助RIS为合法用户创造更好的无线传播条件的同时,利用RIS的相移不确定性来混淆监听者的检测。为探究所提方法的隐蔽性能增益,在保证监听者低检测概率以及满足蜂窝用户服务质量的条件下,构建通过联合优化蜂窝用户、D2D发射机的发射功率以及RIS相移来最大化D2D用户的隐蔽速率的优化问题。为解决上述变量和约束高度耦合的非凸优化问题,提出一种高效的基于高斯随机化的交替优化算法,求解出最优的蜂窝用户和D2D发射机的发射功率以及RIS相移。仿真结果表明,RIS的辅助给D2D隐蔽传输系统带来了显著的性能提升,通过增加RIS反射元件数量,或提升蜂窝用户发射功率为D2D隐蔽传输提供更好的掩体都可以进一步提升隐蔽通信性能。
  • 图  1  系统模型

    图  2  AO算法处理流程框图

    图  3  RIS辅助D2D传输网络隐蔽通信仿真拓扑结构

    图  4  算法2收敛性曲线

    图  5  最小平均错误检测概率随蜂窝用户发射功率变化曲线

    图  6  最小平均错误检测概率随D2D发射机发射功率变化曲线

    图  7  隐蔽速率随发射功率变化曲线

    图  8  隐蔽速率与RIS反射元件数关系曲线

    图  9  隐蔽速率随隐蔽因子$ \varepsilon $的变化曲线

    1  高斯随机化算法

    (1) 如果$ {\text{rank}}(U(t + 1)) = 1 $,则执行:
     (2)  计算$ U(t + 1) $的非零特征值$ {\lambda _{{\mathrm{eigen}}}} $和特征向量$ {\nu _{{\mathrm{eigen}}}} $;
     (3)  返回$ {\boldsymbol{\varTheta}} \left( {t + 1} \right) = {\text{diag}}(\sqrt {{\lambda _{{\mathrm{eigen}}}}} {\nu _{{\mathrm{eigen}}}}) $;
     (4) 否则,执行:
     (5)  对于$ q = 1,2,\cdots,Q $:
     (6)  计算$ {\boldsymbol{U}}(t + 1) = {\boldsymbol{V}}\Sigma {{\mathbf{V}}^{\rm H}} $并生成$ {e_q} = {\boldsymbol{V}}{\Sigma ^{\frac{1}{2}}}r $,其中
        $ {r_q}\text{~}\mathcal{C}\mathcal{N}\left( {{{\mathbf{0}}_{N + 1}},{{\bf{I}}_{N + 1}}} \right) $;
     (7)  计算:
     $ {{\boldsymbol{\varTheta}} _q} = {{\mathrm{diag}}} \left( {{{\rm e}^{{\mathrm{j}}\arg \left( {\frac{{{{\mathbf{e}}_q}[1]}}{{{{\mathbf{e}}_q}[N + 1]}}} \right)}}, \cdots ,{{\rm e}^{j\arg \left( {\frac{{{{\mathbf{e}}_q}[N]}}{{{{\mathbf{e}}_q}[N + 1]}}} \right)}}} \right) $;
     (8)  解决问题(29),更新其目标值,记为$ {R_q} $;
     (9)  返回:
     $ {\mathrm{return}}{\text{ }}{\boldsymbol{\varTheta}} \left( {t + 1} \right){\text{ }} = {\text{ }}{\mathrm{arg}}{\text{ }}{\max_{q = 1,2,\cdots,Q}}{\text{ }}{R_q} $;
     (10)  结束:
    下载: 导出CSV

    2  基于高斯随机化的交替优化算法

     (1)初始化:${\boldsymbol{\varTheta}} \left( 1 \right)$, ${P_{\rm c}}\left( 1 \right)$, ${P_{\rm t}}\left( 1 \right)$, $ \varrho $;设置迭代索引$t = 1$;
     (2)重复:
     (3)  设定$ {\boldsymbol{\varTheta}} \left( t \right) $,解决问题(22),更新$ {P_{\rm c}}\left( {t + 1} \right) $和$ {P_{\rm t}}\left( {t + 1} \right) $;
     (4)  设定$ {P_{\rm c}}\left( {t + 1} \right) $和$ {P_{\rm t}}\left( {t + 1} \right) $,解决问题(28),更新
        $ U(t + 1) $;
     (5)  更新$ t = t + 1 $;
     (6) 结束:目标值的变化量低于阈值$ \varrho $;
     (7)  通过算法1从$ U(t + 1) $中恢复$ Q\left( {t + 1} \right) $;
    下载: 导出CSV
  • [1] 卢汉成, 王亚正, 赵丹, 等. 智能反射表面辅助的无线通信系统的物理层安全综述[J]. 通信学报, 2022, 43(2): 171–184. doi: 10.11959/j.issn.1000−436x.2022025.

    LU Hancheng, WANG Yazheng, ZHAO Dan, et al. Survey of physical layer security of intelligent reflecting surface-assisted wireless communication systems[J]. Journal on Communications, 2022, 43(2): 171–184. doi: 10.11959/j.issn.1000−436x.2022025.
    [2] MUKHERJEE A, FAKOORIAN S A A, HUANG Jing, et al. Principles of physical layer security in multiuser wireless networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1550–1573. doi: 10.1109/SURV.2014.012314.00178.
    [3] LV Lu, XU Dongyang, HU R Q, et al. Safeguarding next-generation multiple access using physical layer security techniques: A tutorial[J]. Proceedings of the IEEE, 2024, 112(9): 1421–1466. doi: 10.1109/JPROC.2024.3420127.
    [4] ZHANG Zheng, CHEN Jian, WU Qingqing, et al. Securing NOMA networks by exploiting intelligent reflecting surface[J]. IEEE Transactions on Communications, 2022, 70(2): 1096–1111. doi: 10.1109/TCOMM.2021.3126636.
    [5] 罗志勇, 谢映海. 一种用于隐蔽通信的低检测概率波形设计[J]. 信息通信, 2018(8): 63–64. doi: 10.3969/j.issn.1673-1131.2018.08.026.

    LUO Zhiyong and XIE Yinghai. A low probability of detection waveform design for covert communication[J]. Information & Communications, 2018(8): 63–64. doi: 10.3969/j.issn.1673-1131.2018.08.026. (查阅网上资料,未找到本条文献英文信息,请确认) .
    [6] YAN Shihao, ZHOU Xiangyun, HU Jinsong, et al. Low probability of detection communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(5): 19–25. doi: 10.1109/MWC.001.1900057.
    [7] 周小波, 于辉, 彭旭, 等. 智能反射面辅助及人工噪声增强的无线隐蔽通信[J]. 电子与信息学报, 2022, 44(7): 2392–2399. doi: 10.11999/JEIT211618.

    ZHOU Xiaobo, YU Hui, PENG Xu, et al. Wireless covert communications based on intelligent reflecting surface aided and artificial noise enhanced[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2392–2399. doi: 10.11999/JEIT211618.
    [8] 陈炜宇, 骆俊杉, 王方刚, 等. 无线隐蔽通信容量限与实现技术综述[J]. 通信学报, 2022, 43(8): 203–218. doi: 10.11959/j.issn.1000−436x.2022153.

    CHEN Weiyu, LUO Junshan, WANG Fanggang, et al. Survey of capacity limits and implementation techniques in wireless covert communication[J]. Journal on Communications, 2022, 43(8): 203–218. doi: 10.11959/j.issn.1000−436x.2022153.
    [9] MA Yue, MA Ruiqian, LIN Zhi, et al. Improving age of information for covert communication with time-modulated arrays[J]. IEEE Internet of Things Journal, 2025, 12(2): 1718–1731. doi: 10.1109/JIOT.2024.3466855.
    [10] WANG Chao, XIONG Zehui, ZHENG Meng, et al. Covert communications via two-way IRS with noise power uncertainty[J]. IEEE Transactions on Communications, 2024, 72(8): 4803–4815. doi: 10.1109/TCOMM.2024.3381672.
    [11] WANG Chao, LI Zan, SHI Jia, et al. Intelligent reflecting surface-assisted multi-antenna covert communications: Joint active and passive beamforming optimization[J]. IEEE Transactions on Communications, 2021, 69(6): 3984–4000. doi: 10.1109/TCOMM.2021.3062376.
    [12] FENG Shaohan, LU Xiao, SUN Sumei, et al. Securing large-scale D2D networks using covert communication and friendly jamming[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 592–606. doi: 10.1109/TWC.2023.3280464.
    [13] HE Biao, YAN Shihao, ZHOU Xiangyun, et al. On covert communication with noise uncertainty[J]. IEEE Communications Letters, 2017, 21(4): 941–944. doi: 10.1109/LCOMM.2016.2647716.
    [14] YANG Bin, TALEB T, FAN Yuanyuan, et al. Mode selection and cooperative jamming for covert communication in D2D underlaid UAV networks[J]. IEEE Network, 2021, 35(2): 104–111. doi: 10.1109/MNET.011.2000100.
    [15] HU Jinsong, YAN Shihao, ZHOU Xiangyun, et al. Covert communication achieved by a greedy relay in wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4766–4779. doi: 10.1109/TWC.2018.2831217.
    [16] LV Lu, LI Zan, DING Haiyang, et al. Achieving covert wireless communication with a multi-antenna relay[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 760–773. doi: 10.1109/TIFS.2022.3152353.
    [17] SHMUEL O, COHEN A, and GUREWITZ O. Multi-antenna jamming in covert communication[J]. IEEE Transactions on Communications, 2021, 69(7): 4644–4658. doi: 10.1109/TCOMM.2021.3067386.
    [18] JIANG Yu’e, WANG Liangmin, and CHEN H H. Covert communications in D2D underlaying cellular networks with antenna array assisted artificial noise transmission[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2980–2992. doi: 10.1109/TVT.2020.2966538.
    [19] TAO Liwei, YANG Weiwei, YAN Shihao, et al. Covert communication in downlink NOMA systems with random transmit power[J]. IEEE Wireless Communications Letters, 2020, 9(11): 2000–2004. doi: 10.1109/LWC.2020.3011191.
    [20] TAO Liwei, YANG Weiwei, LU Xingbo, et al. Achieving covert communication in uplink NOMA systems via energy harvesting jammer[J]. IEEE Communications Letters, 2021, 25(12): 3785–3789. doi: 10.1109/LCOMM.2021.3114231.
    [21] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737.
    [22] LU Xiao, HOSSAIN E, SHAFIQUE T, et al. Intelligent reflecting surface enabled covert communications in wireless networks[J]. IEEE Network, 2020, 34(5): 148–155. doi: 10.1109/MNET.011.1900579.
    [23] ZHOU Xiaobo, YAN Shihao, WU Qingqing, et al. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 532–547. doi: 10.1109/TWC.2021.3098099.
    [24] SI Jiangbo, LI Zan, ZHAO Yan, et al. Covert transmission assisted by intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(8): 5394–5408. doi: 10.1109/TCOMM.2021.3082779.
    [25] LV Lu, WU Qingqing, LI Zan, et al. Covert communication in intelligent reflecting surface-assisted NOMA systems: Design, analysis, and optimization[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1735–1750. doi: 10.1109/TWC.2021.3106346.
    [26] DING Zhiguo, SCHOBER R, and POOR H V. On the impact of phase shifting designs on IRS-NOMA[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1596–1600. doi: 10.1109/LWC.2020.2991116.
    [27] MARDIA K V and JUPP P E. Directional Statistics[M]. Chichester: John Wiley & Sons, 2009: 15–18.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  7
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-20
  • 修回日期:  2025-04-01
  • 网络出版日期:  2025-04-14

目录

    /

    返回文章
    返回