高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复杂生理信息驱动的精准手关节运动解析方法

闫佳庆 刘庚辰 周庆锜 薛玮祺 周伟傲 田云志 王家驹 董哲康 李小俚

闫佳庆, 刘庚辰, 周庆锜, 薛玮祺, 周伟傲, 田云志, 王家驹, 董哲康, 李小俚. 基于复杂生理信息驱动的精准手关节运动解析方法[J]. 电子与信息学报. doi: 10.11999/JEIT250033
引用本文: 闫佳庆, 刘庚辰, 周庆锜, 薛玮祺, 周伟傲, 田云志, 王家驹, 董哲康, 李小俚. 基于复杂生理信息驱动的精准手关节运动解析方法[J]. 电子与信息学报. doi: 10.11999/JEIT250033
YAN Jiaqing, LIU Gengchen, ZHOU Qingqi, XUE Weiqi, ZHOU Weiao, TIAN Yunzhi, WANG Jiaju, DONG Zhekang, LI Xiaoli. Precise Hand Joint Motion Analysis Driven by Complex Physiological Information[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250033
Citation: YAN Jiaqing, LIU Gengchen, ZHOU Qingqi, XUE Weiqi, ZHOU Weiao, TIAN Yunzhi, WANG Jiaju, DONG Zhekang, LI Xiaoli. Precise Hand Joint Motion Analysis Driven by Complex Physiological Information[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250033

基于复杂生理信息驱动的精准手关节运动解析方法

doi: 10.11999/JEIT250033
详细信息
    作者简介:

    闫佳庆:男,教授,研究方向为计算神经科学、认知神经科学

    刘庚辰:男,硕士生,研究方向为表面肌电信号、生物电信号

    周庆锜:男,硕士生,研究方向为生物电信号、脑电溯源

    薛玮祺:男,硕士生,研究方向为表面肌电信号、生物电信号

    周伟傲:男,硕士生,研究方向为神经网络、人机交互界面

    田云志:男,硕士生,研究方向为人机交互界面

    王家驹:男,硕士生,研究方向为神经网络、人机交互界面

    董哲康:男,副研究员,研究方向为:类脑计算、神经形态系统

    李小俚:男,教授,研究方向为神经信息工程、计算神经科学

    通讯作者:

    李小俚 xiaolili@scut.edu.cn

  • 中图分类号: TN911.7; R318

Precise Hand Joint Motion Analysis Driven by Complex Physiological Information

  • 摘要: 手是人体至关重要的组成部分,其高度的灵巧性使我们能够执行各种复杂任务,然而,手部功能障碍会严重影响患者的日常生活,使其难以完成基本的日常活动。该文提出一种基于8通道表面肌电信号(sEMG)的新颖手部运动估计方法,用于解析15个手部关节的运动,旨在提高手部功能障碍患者的生活质量。该方法采用连续去噪网络,结合稀疏注意力机制和多通道注意力机制,有效提取sEMG信号中蕴含的时空特征。网络采用双译码器结构,分别解析含噪姿态和姿态修正范围,并利用双向长短期记忆网络对含噪姿态进行修正,最终实现精准的手部姿态估计。实验结果表明,相比现有方法,该方法在多通道sEMG信号拟合连续手部姿态估计方面表现出更优越的性能,能够解析更多关节,且估计误差更小。
  • 图  1  手部预测关节位置

    图  2  NinaproDB5数据校准关节图

    图  3  AHPE算法流程图

    图  4  ManoTorch 模型误差校准

    图  5  复杂手势姿态准确性评估

    图  6  AHPE模型在复杂手势预测下的网格误差图

    图  7  损失部分的消融实验

    表  1  对话内场景下不同模型的RMSE, R2和MAD的参数评估

    方法CNN-TransformerDKFNCNN-LSTMTEMPOnetRPC-NetAHPE
    RMSE12.754.3211.974.763.882.86
    R20.760.910.730.880.900.92
    MAD (°)3.092.123.762.321.921.79
    下载: 导出CSV

    表  2  对话间场景下不同模型的RMSE, R2和MAD的参数评估

    方法 CNN-Transformer DKFN CNN-LSTM TEMPOnet RPC-Net AHPE
    RMSE 48.25 8.69 12.50 7.96 4.36 3.72
    R2 0.36 0.75 0.66 0.84 0.86 0.88
    MAD 21.36 8.32 11.24 6.89 3.07 2.36
    下载: 导出CSV

    表  3  注意力机制有效性评估(RMSE/R2)

    数据集 多头注意力机制 多头稀疏注意力机制 AHPE
    NinaproDB8 30.46/0.356 8 16.32/0.68 3.72/0.88
    NinaproDB5 62.21/–1.32 21.32/0.55 10.30/0.72
    下载: 导出CSV

    表  4  双译码器有效性的评估(RMSE/R2)

    数据集单一译码器输出单一译码器和单一输入单一译码器和双输入双译码器和双输入
    NinaproDB818.17/0.5210.32/0.587.32/0.683.72/0.88
    NinaproDB548.72/0.3220.51/0.5416.31/0.6610.30/0.72
    下载: 导出CSV

    表  5  不同长度的时间窗口的效果

    窗口长度1005001 0002 000
    时间45~487~942
    RMSE18.3210.3011.814.11
    R20.560.720.750.64
    下载: 导出CSV
  • [1] SITOLE S P and SUP F C. Continuous prediction of human joint mechanics using EMG signals: A review of model-based and model-free approaches[J]. IEEE Transactions on Medical Robotics and Bionics, 2023, 5(3): 528–546. doi: 10.1109/TMRB.2023.3292451.
    [2] ZENG Chao, YANG Chenguang, CHENG Hong, et al. Simultaneously encoding movement and sEMG-based stiffness for robotic skill learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 1244–1252. doi: 10.1109/TII.2020.2984482.
    [3] CHEN Qingzheng and TAO Qing. Estimating finger joint angles from surface electromyography using convolutional neural networks[C]. Proceedings of 2024 China Automation Congress, Qingdao, China, 2024. doi: 10.1109/CAC63892.2024.10865263.
    [4] ZHANG Haoshi, PENG Boxing, TIAN Lan, et al. Continuous Kalman estimation method for finger kinematics tracking from surface electromyography[J]. Cyborg and Bionic Systems, 2024, 5: 0094. doi: 10.34133/cbsystems.0094.
    [5] ROLANDINO G, GAGLIARDI M, MARTINS T, et al. Developing RPC-Net: Leveraging high-density electromyography and machine learning for improved hand position estimation[J]. IEEE Transactions on Biomedical Engineering, 2024, 71(5): 1617–1627. doi: 10.1109/TBME.2023.3346192.
    [6] PIZZOLATO S, TAGLIAPIETRA L, COGNOLATO M, et al. Comparison of six electromyography acquisition setups on hand movement classification tasks[J]. PLoS One, 2017, 12(10): e0186132. doi: 10.1371/journal.pone.0186132.
    [7] KRASOULIS A, KYRANOU I, ERDEN M S, et al. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14(1): 71. doi: 10.1186/s12984-017-0284-4.
    [8] ATZORI M, GIJSBERTS A, CASTELLINI C, et al. Electromyography data for non-invasive naturally-controlled robotic hand prostheses[J]. Scientific Data, 2014, 1(1): 140053. doi: 10.1038/sdata.2014.53.
    [9] QUIVIRA F, KOIKE-AKINO T, WANG Ye, et al. Translating sEMG signals to continuous hand poses using recurrent neural networks[C]. Proceedings of 2018 IEEE EMBS International Conference on Biomedical & Health Informatics, Las Vegas, USA, 2018. doi: 10.1109/BHI.2018.8333395.
    [10] WANG Zijian, XIONG Caihua, and ZHANG Qin. Enhancing the online estimation of finger kinematics from sEMG using LSTM with attention mechanisms[J]. Biomedical Signal Processing and Control, 2024, 92: 105971. doi: 10.1016/j.bspc.2024.105971.
    [11] BAO Tianzhe, ZHAO Yihui, ZAIDI S A R, et al. A deep Kalman filter network for hand kinematics estimation using sEMG[J]. Pattern Recognition Letters, 2021, 143: 88–94. doi: 10.1016/j.patrec.2021.01.001.
    [12] SÎMPETRU R C, CNEJEVICI V, FARINA D, et al. Influence of spatio-temporal filtering on hand kinematics estimation from high-density EMG signals[J]. Journal of Neural Engineering, 2024, 21(2): 026014. doi: 10.1088/1741-2552/ad3498.
    [13] WENG Zihan, ZHANG Xiabing, MOU Yufeng, et al. A hybrid CNN-transformer approach for continuous fine finger motion decoding from sEMG signals[C]. Proceedings of 2024 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Xi’an, China, 2024. doi: 10.1109/CIVEMSA58715.2024.10586636.
    [14] KRASOULIS A, VIJAYAKUMAR S, and NAZARPOUR K. Effect of user practice on prosthetic finger control with an intuitive myoelectric decoder[J]. Frontiers in Neuroscience, 2019, 13: 891. doi: 10.3389/fnins.2019.00891.
    [15] GRACIA-IBÁÑEZ V, VERGARA M, BUFFI J H, et al. Across-subject calibration of an instrumented glove to measure hand movement for clinical purposes[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(6): 587–597. doi: 10.1080/10255842.2016.1265950.
    [16] KUZBORSKIJ I, GIJSBERTS A, and CAPUTO B. On the challenge of classifying 52 hand movements from surface electromyography[C]. Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, USA, 2012. doi: 10.1109/EMBC.2012.6347099.
    [17] JIANG Shuo, GAO Qinghua, LIU Huaiyang, et al. A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition[J]. Sensors and Actuators A: Physical, 2020, 301: 111738. doi: 10.1016/j.sna.2019.111738.
    [18] ROLANDINO G, ZANGRANDI C, VIEIRA T, et al. HDE-Array: Development and validation of a new dry electrode array design to acquire HD-sEMG for hand position estimation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 4004–4013. doi: 10.1109/TNSRE.2024.3490796.
    [19] ROMERO J, TZIONAS D, and BLACK M J. Embodied hands: Modeling and capturing hands and bodies together[J]. ACM Transactions on Graphics (TOG), 2017, 36(6): 245. doi: 10.1145/3130800.3130883.
    [20] YANG Lixin, ZHAN Xinyu, LI Kailin, et al. CPF: Learning a contact potential field to model the hand-object interaction[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021. doi: 10.1109/ICCV48922.2021.01091.
    [21] 陈从平, 郁春明, 闫焕章, 等. 基于改进Transformer的三维人体姿态估计[J]. 传感器与微系统, 2024, 43(6): 117–121. doi: 10.13873/J.1000-9787(2024)06-0117-05.

    CHEN Congping, YU Chunming, YAN Huanzhang, et al. 3D human body pose estimation based on improved Transformer[J]. Transducer and Microsystem Technologies, 2024, 43(6): 117–121. doi: 10.13873/J.1000-9787(2024)06-0117-05.
    [22] ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 11106–11115. doi: 10.1609/aaai.v35i12.17325.
    [23] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372.
    [24] TANZARELLA S, DI DOMENICO D, FORSIUK I, et al. Arm muscle synergies enhance hand posture prediction in combination with forearm muscle synergies[J]. Journal of Neural Engineering, 2024, 21(2): 026043. doi: 10.1088/1741-2552/ad38dd.
    [25] ZANGHIERI M, BENATTI S, BURRELLO A, et al. sEMG-based regression of hand kinematics with temporal convolutional networks on a low-power edge microcontroller[C]. Proceedings of 2021 IEEE International Conference on Omni-Layer Intelligent Systems, Barcelona, Spain, 2021. doi: 10.1109/COINS51742.2021.9524188.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-01-14
  • 修回日期:  2025-05-29
  • 网络出版日期:  2025-06-09

目录

    /

    返回文章
    返回