Joint Resource Optimization Algorithm for Intelligent Reflective Surface Assisted Wireless Soft Video Transmission
-
摘要: 智能反射面(IRS)是下一代移动通信系统的关键使能技术之一,以应对海量设备接入与海量数据流量的需求。而视频数据占比超过了移动数据流量的80%,且呈现稳步增长的趋势。因此,更为高效的无线视频传输方案也成为下一代移动通信系统的迫切需要。为此,该文提出一种面向智能反射面辅助的无线视频软传输方案,充分利用智能反射面辅助的次链路对所传输的视频信号进行增强。所提方案中,视频信号的传输失真同时受到主次链路3种无线资源的影响,分别是传输功率、主发射机的有源波束成形和智能反射面的无源波束成形。视频传输失真最小化问题被建模为联合资源优化问题,并采用交替优化方法将多元联合优化问题解耦为多个单变量优化子问题逐一求解。仿真结果表明,该文所提方法相较于已有的视频软传输方法,峰均功率比(PSNR)提升至少约1.82 dB,显著提高了接收视频重建质量和无线视频传输效率。Abstract:
Objective Intelligent Reflecting Surface (IRS) technology is a key enabler for next-generation mobile communication systems, addressing the growing demands for massive device connectivity and increasing data traffic. Video data accounts for over 80% of global mobile traffic, and this proportion continues to rise. Although video SoftCast offers a simpler structure and more graceful degradation compared to conventional separate source-channel coding schemes, its transmission efficiency is restricted by the limited availability of wireless transmission resources. Moreover, existing SoftCast frameworks are not inherently compatible with IRS-assisted wireless channels. To address these limitations, this paper proposes an IRS-assisted wireless soft video transmission scheme. Methods Video soft transmission distortion is jointly determined by three critical wireless resources: transmit power, active beamforming at the primary transmitter, and passive beamforming at the IRS. Minimizing video soft transmission distortion is therefore formulated as a joint optimization problem over these resources. To solve this multivariable problem, an Alternating Optimization (AO) framework is employed to decouple the original problem into single-variable subproblems. For the fractional nonhomogeneous quadratic optimization and unit-modulus constraints arising in this process, the Semi-Definite Relaxation (SDR) method is applied to obtain near-optimal solutions for both active and passive beamforming vectors. Based on the derived beamforming vectors, the optimal power allocation factor for soft transmission is then computed using the Lagrange multiplier method. Results and Discussions Simulation results indicate that the proposed method yields an improvement of at least 1.82 dB in Peak Signal-to-Noise Ratio (PSNR) compared to existing video soft transmission approaches ( Fig. 3 ). Besides, evaluation across extensive HEVC test sequences shows that the proposed method achieves an average received quality gain of no less than 1.51 dB (Table 1 ). Further simulations reveal that when the secondary link channel quality falls below a critical threshold, it no longer contributes to improving the received video quality (Fig. 5 ). Rapid variations in the secondary signal $c$ degrade the reception quality of the primary signal, with a reduction of approximately 0.52 dB observed (Fig. 6 ). Increasing the number of IRS elements significantly enhances both video reception quality and achievable rates for the primary and secondary links (Fig. 7 ); however, this improvement comes with a power-law scaling increase in computational complexity. Additional simulations confirm that the proposed method maintains per-frame quality fluctuations within an acceptable range across each Group Of Pictures (GOP) (Fig. 8 ). As GOP size increases, temporal redundancy within the source is more effectively removed, leading to further improvements in received quality, although this is accompanied by higher computational complexity (Fig. 9 ).Conclusions This paper proposes an IRS-assisted soft video transmission scheme that leverages IRS-aided secondary links to improve received video quality. To minimize video signal distortion, a multivariable optimization problem is formulated for joint resource allocation. An AO framework is adopted to decouple the problem into single-variable subproblems, which are solved iteratively. Simulation results show that the proposed method achieves significant improvements in both objective and subjective visual quality compared to existing video transmission algorithms. In addition, the effects of secondary link channel gain, secondary signal characteristics, the number of IRS elements, and GOP parameters on transmission performance are systematically examined. This study demonstrates, for the first time, the performance enhancement of video soft transmission using IRS and provides a technical basis for the development of video soft transmission in IRS-assisted communication environments. -
1 求解联合优化$ {\text{P1}} $的AO交替优化算法
初始化:收敛精度$\varepsilon = 0.001$,最大迭代次数$K$,次信号$c$的调
制方式,有源波束成形向量随机初始值${{\boldsymbol{w}}^{(0)}}$,功率分配因子随
机初始值$\mu _i^{(0)}$;(1) for $k$ = 1 to $K$ do (2) 通过${{\boldsymbol{w}}^{(k - 1)}}$和$\mu _i^{(k - 1)}$,利用SDR方法求解问题$ {\text{P1}}{\text{.1}} $得到
${{\boldsymbol{\theta }}^{(k)}}$;(3) 通过$\mu _i^{(k - 1)}$和更新的${{\boldsymbol{\theta }}^{(k)}}$,利用SDR方法求解问题$ {\text{P1}}{\text{.2}} $得
到${{\boldsymbol{w}}^{(k)}}$;(4) 通过更新${{\boldsymbol{\theta }}^{(k)}}$和${{\boldsymbol{w}}^{(k)}}$,利用拉格朗日乘子法得到$\mu _i^{(k)}$; (5) 基于${{\boldsymbol{\theta }}^{(k)}}$, ${{\boldsymbol{w}}^{(k)}}$和$\mu _i^{(k)}$计算第$k$次失真$D_{{\text{toatal}}}^{(k)}$; (6) if $D_{{\text{toatal}}}^{(k - 1)} - D_{{\text{toatal}}}^{(k)} \le \varepsilon $, then (7) 返回${{\boldsymbol{\theta }}^{(k)}}$, ${{\boldsymbol{w}}^{(k)}}$和$\mu _i^{(k)}$; (8) else if $k = K$, then (9) 返回${{\boldsymbol{\theta }}^{(K)}}$,${{\boldsymbol{w}}^{(K)}}$和$\mu _i^{(K)}$ (10) end if (11) end for (12) 输出:${{\boldsymbol{\theta }}^{({\text{opt}})}}$, ${{\boldsymbol{w}}^{({\text{opt}})}}$和$\mu _i^{({\text{opt}})}$ 表 1 在HEVC标准测试序列中的算法性能对比(CSNR = 5 dB,性能指标:PSNR(dB))
类型 分辨率 序列名称 本文方法 ACIB-SoftCast SoftCast-IDCT AGCC-SoftCast ParCast Class A 2 560×1 600 PeopleOnStreet 32.11 30.55 29.48 29.10 26.66 Traffic 34.29 32.67 31.80 31.55 29.29 Class B 1 920×1 080 BQTerrace 29.90 28.91 27.51 26.75 24.12 Cactus 32.18 30.38 29.94 29.78 26.78 Kimono 37.49 36.09 35.29 35.03 31.89 ParkScene 35.26 33.37 32.11 32.00 30.06 Tennis 36.08 34.56 33.98 33.08 30.98 Class C 832×480 BasketballDrill 32.82 31.82 29.95 29.96 27.32 BQMall 31.38 29.57 28.89 28.13 26.38 PartyScene 30.01 28.21 27.91 27.41 26.11 RaceHorses-C 30.22 28.27 27.72 27.58 24.68 Class D 416×240 BasketballPass 31.98 30.16 29.78 28.49 26.99 BlowingBubbles 31.45 29.32 28.51 27.95 25.89 BQSquare 27.90 26.78 25.34 24.75 23.19 Class E 1 280×720 KristenAndSara 34.99 33.25 32.12 31.78 29.05 Johnny 35.11 33.25 32.62 31.49 28.61 Class F 1 024×768 ChinaSpeed 29.66 29.15 28.06 26.16 25.37 1 280×720 SlideEditing 27.72 27.10 25.59 25.41 24.97 平均性能 32.25 30.75 29.81 29.24 27.13 -
[1] ALOTAIBI A and BARNAWI A. Securing massive IoT in 6G: Recent solutions, architectures, future directions[J]. Internet of Things, 2023, 22: 100715. doi: 10.1016/j.iot.2023.100715. [2] 陈晓, 施建锋, 朱建月, 等. 智能超表面辅助多用户系统的通用低复杂度波束成形设计[J]. 电子与信息学报, 2025, 47(1): 128–137. doi: 10.11999/JEIT240051.CHEN Xiao, SHI Jianfeng, ZHU Jianyue, et al. General low-complexity beamforming designs for reconfigurable intelligent surface-aided multi-user systems[J]. Journal of Electronics & Information Technology, 2025, 47(1): 128–137. doi: 10.11999/JEIT240051. [3] ZHOU Yanping, DENG Fang, and LI Shidang. Jointly active/passive beamforming optimization for intelligent-reflecting surface-assisted cognitive-IoT networks[J]. Electronics, 2024, 13(2): 299. doi: 10.3390/electronics13020299. [4] MU Xidong, LIU Yuanwei, GUO Li, et al. Capacity and optimal resource allocation for IRS-assisted multi-user communication systems[J]. IEEE Transactions on Communications, 2021, 69(6): 3771–3786. doi: 10.1109/TCOMM.2021.3062651. [5] 张祖凡, 唐睿. IRS多分区辅助太赫兹多子阵列波束成形设计[J]. 通信学报, 2023, 44(8): 78–88. doi: 10.11959/j.issn.1000-436x.2023158.ZHANG Zufan and TANG Rui. Design of beamforming for IRS multi-partition-aided THz multi-subarray[J]. Journal on Communications, 2023, 44(8): 78–88. doi: 10.11959/j.issn.1000-436x.2023158. [6] HUA Meng, WU Qingqing, YANG Luxi, et al. A novel wireless communication paradigm for intelligent reflecting surface based symbiotic radio systems[J]. IEEE Transactions on Signal Processing, 2022, 70: 550–565. doi: 10.1109/TSP.2021.3135603. [7] ZHANG Qianqian, LIANG Yingchang, and POOR H V. Reconfigurable intelligent surface assisted MIMO symbiotic radio networks[J]. IEEE Transactions on Communications, 2021, 69(7): 4832–4846. doi: 10.1109/TCOMM.2021.3070043. [8] CISCO. Cisco Annual Internet Report (2018–2023) White Paper[M]. San Jose: Cisco Systems, 2020: 1–35. [9] LIAO Jingrui, ZHAN Cheng, YANG Yang, et al. Quality-driven beamforming design for IRS-aided video broadcasting[J]. IEEE Transactions on Vehicular Technology, 2025, 74(2): 3561–3566. doi: 10.1109/TVT.2024.3471781. [10] KHAN N, AHMAD A, ALI S, et al. IRS and UAV-relay assisted public safety networks for video transmission: Optimizing UAVs deployment and resource allocation[J]. Telecommunication Systems, 2024, 86(3): 433–449. doi: 10.1007/s11235-024-01128-3. [11] CHONG Baolin, LU Hancheng, QIN Langtian, et al. Power optimization in multi-IRS aided delay-constrained IoVT systems[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 1020–1034. doi: 10.1109/TVT.2024.3460054. [12] SONG Mengshu, MA Nan, DONG Chen, et al. Deep joint source-channel coding for wireless image transmission with adaptive models[J]. Electronics, 2023, 12(22): 4637. doi: 10.3390/electronics12224637. [13] YADAV P, SANDEEP K, and RAJESH K. A review of transmission rate over wireless fading channels: Classifications, applications, and challenges[J]. Wireless Personal Communications, 2022, 122(2): 1709–1765. doi: 10.1007/s11277-021-08968-1. [14] YI Zhao and ZOU Weixia. A novel NE-DFT channel estimation scheme for millimeter-wave massive MIMO vehicular communications[J]. IEEE Access, 2020, 8: 74965–74976. doi: 10.1109/ACCESS.2020.2988666. [15] FUJIHASHI T, KOIKE-AKINO T, and WATANABE T. Soft delivery: Survey on a new paradigm for wireless and mobile multimedia streaming[J]. ACM Computing Surveys, 2024, 56(2): 33. doi: 10.1145/3607139. [16] JAKUBCZAK S and KATABI D. A cross-layer design for scalable mobile video[C]. The 17th Annual International Conference on Mobile Computing and Networking, Las Vegas, USA, 2011: 289–300. doi: 10.1145/2030613.2030646. [17] ŽÁDNÍK J, KIEFFER M, TRIOUX A, et al. CV-cast: Computer vision-oriented linear coding and transmission[J]. IEEE Transactions on Mobile Computing, 2025, 24(2): 1149–1162. doi: 10.1109/TMC.2024.3478048. [18] LI Ao, YANG Taihai, WU Wenxin, et al. Soft transmission of 3D video for low power and low complexity scenario[J]. Digital Communications and Networks, 2023, 9(3): 769–778. doi: 10.1016/j.dcan.2022.04.024. [19] HE Chaofan, HU Yang, CHEN Yan, et al. MUcast: Linear uncoded multiuser video streaming with channel assignment and power allocation optimization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(4): 1136–1146. doi: 10.1109/TCSVT.2019.2897649. [20] LIU Hangfan, XIONG Ruiqin, FAN Xiaopeng, et al. CG-Cast: Scalable wireless image SoftCast using compressive gradient[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(6): 1832–1843. doi: 10.1109/TCSVT.2018.2842818. [21] LIU Xiaolin, HU Wenjun, PU Qifan, et al. ParCast: Soft video delivery in MIMO-OFDM WLANs[C]. The 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 2012: 233–244. doi: 10.1145/2348543.2348573. [22] LIU Xiaolin, HU Wenjun, LUO Chong, et al. ParCast+: Parallel video unicast in MIMO-OFDM WLANs[J]. IEEE Transactions on Multimedia, 2014, 16(7): 2038–2051. doi: 10.1109/TMM.2014.2331616. [23] HE Chaofan, ZHU Shuyuan, and ZENG Bing. NOMA-based uncoded video transmission with optimization of joint resource allocation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(5): 2439–2450. doi: 10.1109/TCSVT.2022.3223954. [24] THABET S K S, OSEI-MENSAH E, AHMED O, et al. Resource optimization for 3D video SoftCast with joint texture/depth power allocation[J]. Applied Sciences, 2022, 12(10): 5047. doi: 10.3390/app12105047. [25] FUJIHASHI T, KOIKE-AKINO T, WATANABE T, et al. HoloCast: Graph signal processing for graceful point cloud delivery[C]. ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–7. doi: 10.1109/ICC.2019.8761819. [26] FUJIHASHI T, KOIKE-AKINO T, WATANABE T, et al. HoloCast+: Hybrid digital-analog transmission for graceful point cloud delivery with graph Fourier transform[J]. IEEE Transactions on Multimedia, 2022, 24: 2179–2191. doi: 10.1109/TMM.2021.3077772. [27] LEE J, LU Hancheng, and CHEN Yuang. Robust wireless VR video transmission based on overlapped FoVs[C]. ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023: 3084–3089. doi: 10.1109/ICC45041.2023.10279450. [28] TRIOUX A, COUDOUX F X, CORLAY P, et al. Temporal information based GoP adaptation for linear video delivery schemes[J]. Signal Processing: Image Communication, 2020, 82: 115734. doi: 10.1016/j.image.2019.115734. [29] KANJ H, TRIOUX A, COUDOUX F X, et al. A comparative study of the whitening methods in linear video coding and transmission schemes[C]. 2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC), El Jadida, Morocco, 2022: 1–6. doi: 10.1109/ISIVC54825.2022.9800738. [30] 唐述, 杨鹏, 谢显中, 等. 自适应聚类的图像块分级DCT混合数模无线传输方法[J]. 通信学报, 2024, 45(1): 152–166. doi: 10.11959/j.issn.1000-436x.2024015.TANG Shu, YANG Peng, XIE Xianzhong, et al. Adaptive-clustered image-block hierarchical DCT hybrid digital-analog wireless transmission method[J]. Journal on Communications, 2024, 45(1): 152–166. doi: 10.11959/j.issn.1000-436x.2024015. [31] WU Junjie, CHENG Baoping, LUO Lei, et al. Efficient video SoftCast for intelligent reflective surfaces assisted symbiotic radio network[C]. 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, 2023: 1–3. doi: 10.1109/BMSB58369.2023.10211167. -