高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向智能反射面辅助的无线视频软传输联合资源优化算法

吴俊杰 罗雷 朱策 江沛

吴俊杰, 罗雷, 朱策, 江沛. 面向智能反射面辅助的无线视频软传输联合资源优化算法[J]. 电子与信息学报, 2025, 47(8): 2630-2641. doi: 10.11999/JEIT250019
引用本文: 吴俊杰, 罗雷, 朱策, 江沛. 面向智能反射面辅助的无线视频软传输联合资源优化算法[J]. 电子与信息学报, 2025, 47(8): 2630-2641. doi: 10.11999/JEIT250019
WU Junjie, LUO Lei, ZHU Ce, JIANG Pei. Joint Resource Optimization Algorithm for Intelligent Reflective Surface Assisted Wireless Soft Video Transmission[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2630-2641. doi: 10.11999/JEIT250019
Citation: WU Junjie, LUO Lei, ZHU Ce, JIANG Pei. Joint Resource Optimization Algorithm for Intelligent Reflective Surface Assisted Wireless Soft Video Transmission[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2630-2641. doi: 10.11999/JEIT250019

面向智能反射面辅助的无线视频软传输联合资源优化算法

doi: 10.11999/JEIT250019 cstr: 32379.14.JEIT250019
基金项目: 国家自然科学基金(U19A2052, 62020106011, 62061015),重庆市自然科学基金(CSTB2022NSCQ-MSX1283, 2023NSCQ-MSX2930),重庆邮电大学青创基金(SCIE-QN-2022-05)
详细信息
    作者简介:

    吴俊杰:男,博士生,研究方向为无线视频编码与传输、多媒体信号处理、深度学习等

    罗雷:男,副教授,研究方向为视频编解码、多媒体信号处理、深度学习、机器学习等

    朱策:男,教授,研究方向为视频图像处理等

    江沛:男,副教授,研究方向为机器人控制理论等

    通讯作者:

    罗雷 luolei@cqupt.edu.cn

  • 中图分类号: TN92

Joint Resource Optimization Algorithm for Intelligent Reflective Surface Assisted Wireless Soft Video Transmission

Funds: The National Natural Science Foundation of China(U19A2052, 62020106011, 62061015), The Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1283, 2023NSCQ-MSX2930), The Youth Innovation Group Support Program of ICE Discipline of CQUPT (SCIE-QN-2022-05)
  • 摘要: 智能反射面(IRS)是下一代移动通信系统的关键使能技术之一,以应对海量设备接入与海量数据流量的需求。而视频数据占比超过了移动数据流量的80%,且呈现稳步增长的趋势。因此,更为高效的无线视频传输方案也成为下一代移动通信系统的迫切需要。为此,该文提出一种面向智能反射面辅助的无线视频软传输方案,充分利用智能反射面辅助的次链路对所传输的视频信号进行增强。所提方案中,视频信号的传输失真同时受到主次链路3种无线资源的影响,分别是传输功率、主发射机的有源波束成形和智能反射面的无源波束成形。视频传输失真最小化问题被建模为联合资源优化问题,并采用交替优化方法将多元联合优化问题解耦为多个单变量优化子问题逐一求解。仿真结果表明,该文所提方法相较于已有的视频软传输方法,峰均功率比(PSNR)提升至少约1.82 dB,显著提高了接收视频重建质量和无线视频传输效率。
  • 图  1  所提面向智能反射面辅助的视频软传输系统框图

    图  2  主次信号传输周期关系

    图  3  本文方法与其他方法的视频传输性能比较

    图  4  本文方法与单链路AGCC-SoftCast方法的主观质量对比,CSNR = 5 dB

    图  5  次链路信道质量的影响(序列:BQTerrace, CSNR = 5 dB)

    图  6  不同次信号$c$的影响 (序列:BQTerrace)

    图  7  IRS反射单元数量的影响及次主链路的视频信号可达速率之比,CSNR = 5 dB

    图  8  1个GOP内不同视频帧的接收质量,CSNR = 5 dB

    图  9  不同GOP参数的影响,序列:BQTerrace, CSNR = 5 dB

    1  求解联合优化$ {\text{P1}} $的AO交替优化算法

     初始化:收敛精度$\varepsilon = 0.001$,最大迭代次数$K$,次信号$c$的调
     制方式,有源波束成形向量随机初始值${{\boldsymbol{w}}^{(0)}}$,功率分配因子随
     机初始值$\mu _i^{(0)}$;
     (1) for $k$ = 1 to $K$ do
     (2)  通过${{\boldsymbol{w}}^{(k - 1)}}$和$\mu _i^{(k - 1)}$,利用SDR方法求解问题$ {\text{P1}}{\text{.1}} $得到
        ${{\boldsymbol{\theta }}^{(k)}}$;
     (3)  通过$\mu _i^{(k - 1)}$和更新的${{\boldsymbol{\theta }}^{(k)}}$,利用SDR方法求解问题$ {\text{P1}}{\text{.2}} $得
        到${{\boldsymbol{w}}^{(k)}}$;
     (4)  通过更新${{\boldsymbol{\theta }}^{(k)}}$和${{\boldsymbol{w}}^{(k)}}$,利用拉格朗日乘子法得到$\mu _i^{(k)}$;
     (5)  基于${{\boldsymbol{\theta }}^{(k)}}$, ${{\boldsymbol{w}}^{(k)}}$和$\mu _i^{(k)}$计算第$k$次失真$D_{{\text{toatal}}}^{(k)}$;
     (6)  if $D_{{\text{toatal}}}^{(k - 1)} - D_{{\text{toatal}}}^{(k)} \le \varepsilon $, then
     (7)   返回${{\boldsymbol{\theta }}^{(k)}}$, ${{\boldsymbol{w}}^{(k)}}$和$\mu _i^{(k)}$;
     (8)  else if $k = K$, then
     (9)   返回${{\boldsymbol{\theta }}^{(K)}}$,${{\boldsymbol{w}}^{(K)}}$和$\mu _i^{(K)}$
     (10) end if
     (11) end for
     (12) 输出:${{\boldsymbol{\theta }}^{({\text{opt}})}}$, ${{\boldsymbol{w}}^{({\text{opt}})}}$和$\mu _i^{({\text{opt}})}$
    下载: 导出CSV

    表  1  在HEVC标准测试序列中的算法性能对比(CSNR = 5 dB,性能指标:PSNR(dB))

    类型 分辨率 序列名称 本文方法 ACIB-SoftCast SoftCast-IDCT AGCC-SoftCast ParCast
    Class A 2 560×1 600 PeopleOnStreet 32.11 30.55 29.48 29.10 26.66
    Traffic 34.29 32.67 31.80 31.55 29.29
    Class B 1 920×1 080 BQTerrace 29.90 28.91 27.51 26.75 24.12
    Cactus 32.18 30.38 29.94 29.78 26.78
    Kimono 37.49 36.09 35.29 35.03 31.89
    ParkScene 35.26 33.37 32.11 32.00 30.06
    Tennis 36.08 34.56 33.98 33.08 30.98
    Class C 832×480 BasketballDrill 32.82 31.82 29.95 29.96 27.32
    BQMall 31.38 29.57 28.89 28.13 26.38
    PartyScene 30.01 28.21 27.91 27.41 26.11
    RaceHorses-C 30.22 28.27 27.72 27.58 24.68
    Class D 416×240 BasketballPass 31.98 30.16 29.78 28.49 26.99
    BlowingBubbles 31.45 29.32 28.51 27.95 25.89
    BQSquare 27.90 26.78 25.34 24.75 23.19
    Class E 1 280×720 KristenAndSara 34.99 33.25 32.12 31.78 29.05
    Johnny 35.11 33.25 32.62 31.49 28.61
    Class F 1 024×768 ChinaSpeed 29.66 29.15 28.06 26.16 25.37
    1 280×720 SlideEditing 27.72 27.10 25.59 25.41 24.97
    平均性能 32.25 30.75 29.81 29.24 27.13
    下载: 导出CSV
  • [1] ALOTAIBI A and BARNAWI A. Securing massive IoT in 6G: Recent solutions, architectures, future directions[J]. Internet of Things, 2023, 22: 100715. doi: 10.1016/j.iot.2023.100715.
    [2] 陈晓, 施建锋, 朱建月, 等. 智能超表面辅助多用户系统的通用低复杂度波束成形设计[J]. 电子与信息学报, 2025, 47(1): 128–137. doi: 10.11999/JEIT240051.

    CHEN Xiao, SHI Jianfeng, ZHU Jianyue, et al. General low-complexity beamforming designs for reconfigurable intelligent surface-aided multi-user systems[J]. Journal of Electronics & Information Technology, 2025, 47(1): 128–137. doi: 10.11999/JEIT240051.
    [3] ZHOU Yanping, DENG Fang, and LI Shidang. Jointly active/passive beamforming optimization for intelligent-reflecting surface-assisted cognitive-IoT networks[J]. Electronics, 2024, 13(2): 299. doi: 10.3390/electronics13020299.
    [4] MU Xidong, LIU Yuanwei, GUO Li, et al. Capacity and optimal resource allocation for IRS-assisted multi-user communication systems[J]. IEEE Transactions on Communications, 2021, 69(6): 3771–3786. doi: 10.1109/TCOMM.2021.3062651.
    [5] 张祖凡, 唐睿. IRS多分区辅助太赫兹多子阵列波束成形设计[J]. 通信学报, 2023, 44(8): 78–88. doi: 10.11959/j.issn.1000-436x.2023158.

    ZHANG Zufan and TANG Rui. Design of beamforming for IRS multi-partition-aided THz multi-subarray[J]. Journal on Communications, 2023, 44(8): 78–88. doi: 10.11959/j.issn.1000-436x.2023158.
    [6] HUA Meng, WU Qingqing, YANG Luxi, et al. A novel wireless communication paradigm for intelligent reflecting surface based symbiotic radio systems[J]. IEEE Transactions on Signal Processing, 2022, 70: 550–565. doi: 10.1109/TSP.2021.3135603.
    [7] ZHANG Qianqian, LIANG Yingchang, and POOR H V. Reconfigurable intelligent surface assisted MIMO symbiotic radio networks[J]. IEEE Transactions on Communications, 2021, 69(7): 4832–4846. doi: 10.1109/TCOMM.2021.3070043.
    [8] CISCO. Cisco Annual Internet Report (2018–2023) White Paper[M]. San Jose: Cisco Systems, 2020: 1–35.
    [9] LIAO Jingrui, ZHAN Cheng, YANG Yang, et al. Quality-driven beamforming design for IRS-aided video broadcasting[J]. IEEE Transactions on Vehicular Technology, 2025, 74(2): 3561–3566. doi: 10.1109/TVT.2024.3471781.
    [10] KHAN N, AHMAD A, ALI S, et al. IRS and UAV-relay assisted public safety networks for video transmission: Optimizing UAVs deployment and resource allocation[J]. Telecommunication Systems, 2024, 86(3): 433–449. doi: 10.1007/s11235-024-01128-3.
    [11] CHONG Baolin, LU Hancheng, QIN Langtian, et al. Power optimization in multi-IRS aided delay-constrained IoVT systems[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 1020–1034. doi: 10.1109/TVT.2024.3460054.
    [12] SONG Mengshu, MA Nan, DONG Chen, et al. Deep joint source-channel coding for wireless image transmission with adaptive models[J]. Electronics, 2023, 12(22): 4637. doi: 10.3390/electronics12224637.
    [13] YADAV P, SANDEEP K, and RAJESH K. A review of transmission rate over wireless fading channels: Classifications, applications, and challenges[J]. Wireless Personal Communications, 2022, 122(2): 1709–1765. doi: 10.1007/s11277-021-08968-1.
    [14] YI Zhao and ZOU Weixia. A novel NE-DFT channel estimation scheme for millimeter-wave massive MIMO vehicular communications[J]. IEEE Access, 2020, 8: 74965–74976. doi: 10.1109/ACCESS.2020.2988666.
    [15] FUJIHASHI T, KOIKE-AKINO T, and WATANABE T. Soft delivery: Survey on a new paradigm for wireless and mobile multimedia streaming[J]. ACM Computing Surveys, 2024, 56(2): 33. doi: 10.1145/3607139.
    [16] JAKUBCZAK S and KATABI D. A cross-layer design for scalable mobile video[C]. The 17th Annual International Conference on Mobile Computing and Networking, Las Vegas, USA, 2011: 289–300. doi: 10.1145/2030613.2030646.
    [17] ŽÁDNÍK J, KIEFFER M, TRIOUX A, et al. CV-cast: Computer vision-oriented linear coding and transmission[J]. IEEE Transactions on Mobile Computing, 2025, 24(2): 1149–1162. doi: 10.1109/TMC.2024.3478048.
    [18] LI Ao, YANG Taihai, WU Wenxin, et al. Soft transmission of 3D video for low power and low complexity scenario[J]. Digital Communications and Networks, 2023, 9(3): 769–778. doi: 10.1016/j.dcan.2022.04.024.
    [19] HE Chaofan, HU Yang, CHEN Yan, et al. MUcast: Linear uncoded multiuser video streaming with channel assignment and power allocation optimization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(4): 1136–1146. doi: 10.1109/TCSVT.2019.2897649.
    [20] LIU Hangfan, XIONG Ruiqin, FAN Xiaopeng, et al. CG-Cast: Scalable wireless image SoftCast using compressive gradient[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(6): 1832–1843. doi: 10.1109/TCSVT.2018.2842818.
    [21] LIU Xiaolin, HU Wenjun, PU Qifan, et al. ParCast: Soft video delivery in MIMO-OFDM WLANs[C]. The 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 2012: 233–244. doi: 10.1145/2348543.2348573.
    [22] LIU Xiaolin, HU Wenjun, LUO Chong, et al. ParCast+: Parallel video unicast in MIMO-OFDM WLANs[J]. IEEE Transactions on Multimedia, 2014, 16(7): 2038–2051. doi: 10.1109/TMM.2014.2331616.
    [23] HE Chaofan, ZHU Shuyuan, and ZENG Bing. NOMA-based uncoded video transmission with optimization of joint resource allocation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(5): 2439–2450. doi: 10.1109/TCSVT.2022.3223954.
    [24] THABET S K S, OSEI-MENSAH E, AHMED O, et al. Resource optimization for 3D video SoftCast with joint texture/depth power allocation[J]. Applied Sciences, 2022, 12(10): 5047. doi: 10.3390/app12105047.
    [25] FUJIHASHI T, KOIKE-AKINO T, WATANABE T, et al. HoloCast: Graph signal processing for graceful point cloud delivery[C]. ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–7. doi: 10.1109/ICC.2019.8761819.
    [26] FUJIHASHI T, KOIKE-AKINO T, WATANABE T, et al. HoloCast+: Hybrid digital-analog transmission for graceful point cloud delivery with graph Fourier transform[J]. IEEE Transactions on Multimedia, 2022, 24: 2179–2191. doi: 10.1109/TMM.2021.3077772.
    [27] LEE J, LU Hancheng, and CHEN Yuang. Robust wireless VR video transmission based on overlapped FoVs[C]. ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023: 3084–3089. doi: 10.1109/ICC45041.2023.10279450.
    [28] TRIOUX A, COUDOUX F X, CORLAY P, et al. Temporal information based GoP adaptation for linear video delivery schemes[J]. Signal Processing: Image Communication, 2020, 82: 115734. doi: 10.1016/j.image.2019.115734.
    [29] KANJ H, TRIOUX A, COUDOUX F X, et al. A comparative study of the whitening methods in linear video coding and transmission schemes[C]. 2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC), El Jadida, Morocco, 2022: 1–6. doi: 10.1109/ISIVC54825.2022.9800738.
    [30] 唐述, 杨鹏, 谢显中, 等. 自适应聚类的图像块分级DCT混合数模无线传输方法[J]. 通信学报, 2024, 45(1): 152–166. doi: 10.11959/j.issn.1000-436x.2024015.

    TANG Shu, YANG Peng, XIE Xianzhong, et al. Adaptive-clustered image-block hierarchical DCT hybrid digital-analog wireless transmission method[J]. Journal on Communications, 2024, 45(1): 152–166. doi: 10.11959/j.issn.1000-436x.2024015.
    [31] WU Junjie, CHENG Baoping, LUO Lei, et al. Efficient video SoftCast for intelligent reflective surfaces assisted symbiotic radio network[C]. 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, 2023: 1–3. doi: 10.1109/BMSB58369.2023.10211167.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  110
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10
  • 修回日期:  2025-07-02
  • 网络出版日期:  2025-07-07
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回