高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

传感信号宽带噪声实时自适应抑制方法

文玉梅 朱宇

文玉梅, 朱宇. 传感信号宽带噪声实时自适应抑制方法[J]. 电子与信息学报. doi: 10.11999/JEIT250018
引用本文: 文玉梅, 朱宇. 传感信号宽带噪声实时自适应抑制方法[J]. 电子与信息学报. doi: 10.11999/JEIT250018
WEN Yumei, ZHU Yu. Real-time Adaptive Suppression of Broadband Noise in General Sensing Signals[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250018
Citation: WEN Yumei, ZHU Yu. Real-time Adaptive Suppression of Broadband Noise in General Sensing Signals[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250018

传感信号宽带噪声实时自适应抑制方法

doi: 10.11999/JEIT250018
基金项目: 国家重点研发计划(2021YFC2202803)
详细信息
    作者简介:

    文玉梅:女,博士,教授,研究方向为信息获取与处理,智能检测仪器

    朱宇:男,硕士生,研究方向为数字信号处理

    通讯作者:

    文玉梅 yumei.wen@sjtu.edu.cn

  • 中图分类号: TN911.72

Real-time Adaptive Suppression of Broadband Noise in General Sensing Signals

Funds: The National Key R&D Program of China (2021YFC2202803)
  • 摘要: 自适应滤波是滤除传感输出中宽带噪声的常用方法。自适应过程跟随传感信号统计特征的变化进行调整,收敛时自适应滤波器输出为传感信号的最优估计,而收敛前的调整过程中输出并非最优,且会产生畸变引入额外噪声。该文根据噪声标准差$\sigma $对传感输出进行实时量化变换,变换结果基本保持平稳,且保留传感信号和噪声信息。以变换结果为待滤波信号,自适应滤波器一旦收敛就始终处于收敛状态。对实际传感输出的处理表明,该方法适用于各类传感输出的宽带噪声实时抑制,输出不会产生畸变引入额外噪声。
  • 图  1  宽带随机噪声实时抑制原理图

    图  2  提出方法处理流程

    图  3  含噪带限阶跃信号的差分以及量化变换的结果

    图  4  含噪带限阶跃信号滤波前后对比

    图  5  含噪单边正弦信号的差分以及量化变换的结果

    图  6  滤波前后信号对比

    图  7  镜组温度信号滤波前后波形对比

    图  8  不同算法对镜组温度信号滤波前后对比

    图  9  磁传感器输出信号滤波前后对比

    图  10  不同算法对磁传感器输出信号滤波前后对比

    图  11  心电信号滤波前后对比

    图  12  不同算法对心电信号滤波前后对比

    表  1  传感信号为带限阶跃信号时不同方法滤波效果对比(dB)

    自适应算法 信噪比提升量 最大均方误差
    本文 10.591 8 –27.716 5
    RLS –15.286 7 –0.330 0
    NLMS –20.883 2 –0.467 5
    SVSLMS –21.761 1 0.503 4
    VSSLMS –18.064 8 –0.429 7
    下载: 导出CSV

    表  2  传感信号为单边正弦信号时不同方法滤波效果对比(dB)

    自适应算法 信噪比提升量 最大均方误差
    本文 5.660 8 –48.215 0
    RLS –4.586 1 –23,253 4
    NLMS –20.866 3 –17.253 6
    SVSLMS –22.038 0 –16.816 6
    VSSLMS –23.950 7 –16.269 8
    下载: 导出CSV
  • [1] LENSCHOW D H, WULFMEYER V, and SENFF C. Measuring second-through fourth-order moments in noisy data[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(10): 1330–1347. doi: 10.1175/1520-0426(2000)017<1330:Mstfom>2.0.Co;2.
    [2] 文玉梅, 谢仁峰, 杨进, 等. 管道泄漏检测中的噪声自适应抑制[J]. 仪器仪表学报, 2012, 33(10): 2228–2233. doi: 10.3969/j.issn.0254-3087.2012.10.011.

    WEN Yumei, XIE Renfeng, YANG Jin, et al. Adaptive noise suppression in pipeline leak detection[J]. Chinese Journal of Scientific Instrument, 2012, 33(10): 2228–2233. doi: 10.3969/j.issn.0254-3087.2012.10.011.
    [3] AKHTAR M T and MITSUHASHI W. Improving performance of hybrid active noise control systems for uncorrelated narrowband disturbances[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(7): 2058–2066. doi: 10.1109/tasl.2011.2112349.
    [4] SUN Xun and KUO S M. Active narrowband noise control systems using cascading adaptive filters[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(2): 586–592. doi: 10.1109/tasl.2006.881680.
    [5] WANG Ran, YU Longjing, WEI Chunhua, et al. Aerodynamic noise separation of helicopter main and tail rotors using a cascade filter with Vold-Kalman filter and cyclic wiener filter[J]. Applied Acoustics, 2022, 192: 108751. doi: 10.1016/j.apacoust.2022.108751.
    [6] VERED Y and ELLIOTT S. A parallel analog and digital adaptive feedforward controller for active noise control[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024, 32: 1100–1108. doi: 10.1109/taslp.2024.3350882.
    [7] 陈建春, 耿富录, 徐少莹. 基于自适应线性预测滤波的反辐射导弹检测技术[J]. 电子学报, 2001, 29(6): 755–757. doi: 10.3321/j.issn:0372-2112.2001.06.009.

    CHEN Jianchun, GENG Fulu, and XU Shaoying. ARM detection technique based on adaptive linear prediction error filtering[J]. Acta Electronica Sinica, 2001, 29(6): 755–757. doi: 10.3321/j.issn:0372-2112.2001.06.009.
    [8] MA Yaping, XIAO Yegui, HUANG Boyan, et al. A robust feedback active noise control system with online secondary-path modeling[J]. IEEE Signal Processing Letters, 2022, 29: 1042–1046. doi: 10.1109/lsp.2022.3166396.
    [9] 高鹰, 谢胜利. 一种变步长LMS自适应滤波算法及分析[J]. 电子学报, 2001, 29(8): 1094–1097. doi: 10.3321/j.issn:0372-2112.2001.08.023.

    GAO Ying and XIE Shengli. A variable step size LMS adaptive filtering algorithm and its analysis[J]. Acta Electronica Sinica, 2001, 29(8): 1094–1097. doi: 10.3321/j.issn:0372-2112.2001.08.023.
    [10] 米建伟, 方晓莉, 仇原鹰. 非平稳背景噪声下声音信号增强技术[J]. 仪器仪表学报, 2017, 38(1): 17–22. doi: 10.3969/j.issn.0254-3087.2017.01.003.

    MI Jianwei, FANG Xiaoli, and QIU Yuanying. Enhancement technology for the audio signal with nonstationary background noise[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 17–22. doi: 10.3969/j.issn.0254-3087.2017.01.003.
    [11] LUO Zhengding, SHI Dongyuan, SHEN Xiaoyi, et al. GFANC-Kalman: Generative fixed-filter active noise control with CNN-Kalman filtering[J]. IEEE Signal Processing Letters, 2024, 31: 276–280. doi: 10.1109/lsp.2023.3334695.
    [12] SHI Jiaming and ZHU Huangqiu. Control study for compensating rotor vibration of four-DOF six-pole hybrid magnetic bearings based on variable step size LMS algorithm[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(2): 1616–1626. doi: 10.1109/jestpe.2022.3222656.
    [13] 火元莲, 龙小强, 连培君, 等. 一种类箕舌线函数的变步长归一化自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 335–340. doi: 10.11999/JEIT191003.

    HUO Yuanlian, LONG Xiaoqiang, LIAN Peijun, et al. A kind of versoria function normalized adaptive filtering algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(2): 335–340. doi: 10.11999/JEIT191003.
    [14] TIGLEA D G, CANDIDO R, and SILVA M T M. A variable step size adaptive algorithm with simple parameter selection[J]. IEEE Signal Processing Letters, 2022, 29: 1774–1778. doi: 10.1109/lsp.2022.3195662.
    [15] PATEL V, BHATTACHARJEE S S, and CHRISTENSEN M G. Generalized soft-root-sign based robust sparsity-aware adaptive filters[J]. IEEE Signal Processing Letters, 2023, 30: 200–204. doi: 10.1109/lsp.2023.3252412.
    [16] KUMAR K, KARTHIK M L N S, and GEORGE N V. A novel family of sparsity-aware robust adaptive filters based on a logistic distance metric[J]. IEEE Transactions on Signal Processing, 2022, 70: 6128–6141. doi: 10.1109/tsp.2022.3233528.
    [17] JALAL B, YANG Xiaopeng, LIU Quanhua, et al. Fast and robust variable-step-size LMS algorithm for adaptive beamforming[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1206–1210. doi: 10.1109/lawp.2020.2995244.
    [18] ELEFTHERIOU E and FALCONER D. Tracking properties and steady-state performance of RLS adaptive filter algorithms[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1097–1110. doi: 10.1109/tassp.1986.1164950.
    [19] GODARA L C. Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations[J]. Proceedings of the IEEE, 1997, 85(8): 1195–1245. doi: 10.1109/5.622504.
    [20] WANG Shengyu, JI Bowen, SHAO Dian, et al. A methodology for enhancing SSVEP features using adaptive filtering based on the spatial distribution of EEG signals[J]. Micromachines, 2023, 14(5): 976. doi: 10.3390/mi14050976.
    [21] 邓洪高, 余润华, 纪元法, 等. 偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法[J]. 电子与信息学报, 2025, 47(1): 156–166. doi: 10.11999/JEIT240469.

    DENG Honggao, YU Runhua, JI Yuanfa, et al. An adaptive target tracking method utilizing marginalized cubature Kalman filter with uncompensated biases[J]. Journal of Electronics & Information Technology, 2025, 47(1): 156–166. doi: 10.11999/JEIT240469.
    [22] VINOKUR M. Amplitude-quantised sample of unknown signal plus noise[J]. Proceedings of the Institution of Electrical Engineers, 1971, 118(3/4): 622–625. doi: 10.1049/piee.1971.0109.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10
  • 修回日期:  2025-04-01
  • 网络出版日期:  2025-04-15

目录

    /

    返回文章
    返回