高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低复杂度的变换域正交时频空信道均衡算法

廖勇 刘爽 李雪

廖勇, 刘爽, 李雪. 一种低复杂度的变换域正交时频空信道均衡算法[J]. 电子与信息学报, 2025, 47(7): 2050-2061. doi: 10.11999/JEIT250013
引用本文: 廖勇, 刘爽, 李雪. 一种低复杂度的变换域正交时频空信道均衡算法[J]. 电子与信息学报, 2025, 47(7): 2050-2061. doi: 10.11999/JEIT250013
LIAO Yong, LIU Shuang, LI Xue. Low-Complexity Transform Domain Orthogonal Time Frequency Space Channel Equalization Algorithm[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2050-2061. doi: 10.11999/JEIT250013
Citation: LIAO Yong, LIU Shuang, LI Xue. Low-Complexity Transform Domain Orthogonal Time Frequency Space Channel Equalization Algorithm[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2050-2061. doi: 10.11999/JEIT250013

一种低复杂度的变换域正交时频空信道均衡算法

doi: 10.11999/JEIT250013 cstr: 32379.14.JEIT250013
基金项目: 重庆市自然科学基金(CSTB2023NSCQ-MSX0025)
详细信息
    作者简介:

    廖勇:男,副研究员,研究方向为移动通信、人工智能及其应用

    刘爽:男,硕士生,研究方向为OTFS信道均衡

    李雪:女,硕士,研究方向为高速移动通信中的信道估计

    通讯作者:

    廖勇 liaoy@cqu.edu.cn

  • 11) 该信道估计方法为作者前期研究成果。
  • 中图分类号: TN929.5

Low-Complexity Transform Domain Orthogonal Time Frequency Space Channel Equalization Algorithm

Funds: The Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0025)
  • 摘要: 正交时频空(OTFS)调制在解决高速移动通信中的性能瓶颈方面具有独特优势,但传统均衡算法难以有效消除复杂环境下的符号间干扰(ISI)和多普勒间干扰(IDI),同时还存在复杂度高的问题。针对上述问题,该文提出一种低复杂度的基于分块矩阵的变换域OTFS信道均衡算法。首先,基于时延-多普勒(DD)域信道响应的分块稀疏性,结合保护间隔设计,逐步消除OTFS系统扩散引起的ISI,建立子块的均衡模型。其次,利用信道子矩阵托普利兹循环矩阵的性质,将其进行变换域处理变为对角矩阵,从而在均衡操作中消除IDI并降低算法复杂度。最后,在此算法的基础上引入判决反馈,进一步提升算法的性能增益。系统仿真表明,该文所提算法在复杂度与性能方面均具有良好的折中性能且适合多种实际场景,同时能在一定程度上降低信道估计过程中的导频开销,增加数据传输效率。
  • 图  1  OTFS传输系统

    图  2  全域干扰示意图

    图  3  3条路径场景下信道的输入输出关系

    图  4  发射机中导频和数据符号的位置

    图  5  ${\tilde f_{\text{d}}} = 3\% $, 16QAM调制时判决反馈前后在不同导频利用率下的NMSE性能对比

    图  6  $ {\tilde f_{\text{d}}} = 15\% $, 16QAM调制时判决反馈前后在不同导频利用率下的NMSE性能对比

    图  7  ${\tilde f_{\text{d}}} = 3\% $, 16QAM调制时的BER性能对比

    图  8  ${\tilde f_{\text{d}}} = 15\% $, 16QAM调制时的BER性能对比

    图  9  ${\tilde f_{\text{d}}} = 3\% $,不同调制方式下的BER性能对比

    图  10  ${\tilde f_{\text{d}}} = {\text{15}}\% $,不同调制方式下的BER性能对比

    1  基于分块矩阵的OTFS干扰消除均衡算法

     输入:DD域接收信号中的数据符号$ {{\boldsymbol{y}}^{\text{D}}} $,信道估计输出的DD域
     等效矩阵H
     输出:DD域发送信号中的数据符号$ {\hat {\boldsymbol{x}}^{\text{D}}} $
     (1) for $m = 1:M'$
     (2) for $l = 1:L$
     (3) ISI消除:
      $ {{\boldsymbol{y}}}_{m}^{\text{LOS}}={{\boldsymbol{y}}}_{m}^{\text{D}}-{\displaystyle \sum _{l=1}^{L-1}{{\boldsymbol{K}}}_{m,l}\cdot {{\boldsymbol{x}}}_{m-l}}={{\boldsymbol{K}}}_{m,0}\cdot {{\boldsymbol{x}}}_{m}+{{\boldsymbol{z}}}_{m} $
     (4) end
     (5) 变换域矩阵表示:$ \vec {\boldsymbol{y}}_m^{{\text{LOS}}} = {\vec {\boldsymbol{K}}_{m,l}}{\vec {\boldsymbol{x}}_m} + {\vec {\boldsymbol{z}}_m} $
     (6) 变换域信道均衡:$ {\vec {\boldsymbol{x}}_m} = {\left( {\vec {\boldsymbol{K}}_{m,l}^{\text{H}}{{\vec {\boldsymbol{K}}}_{m,l}} + {\sigma ^2}{\boldsymbol{I}}} \right)^{ - 1}}\vec {\boldsymbol{K}}_{m,l}^{\text{H}}\vec {\boldsymbol{y}}_m^{{\text{LOS}}} $
     (7) 转换回DD域:$ {{\boldsymbol{x}}_m} ={\boldsymbol{ F}}_N^{\text{H}}{\vec {\boldsymbol{x}}_m} $
     (8) end
     (9) 判决反馈:解调:${\mathop {\boldsymbol{x}}\limits^{\smile}}= \mathcal{D}\mathcal{Q}\left( {\boldsymbol{x}} \right) $
     (10) 调制:$\mathop{\mathop {\boldsymbol{x}}\limits^{\smile}}\limits^\frown = \mathcal{Q}\left( {\mathop {\boldsymbol{x}}\limits^{\smile}} \right) $
     (11) 信道估计更新:将$\mathop{\mathop {\boldsymbol{x}}\limits^{\smile}}\limits^\frown $和${\boldsymbol{y}}$输入相应信道估计算法中得到新的H
     (12) 均衡:重复本算法均衡过程得到最后的$ {\hat {\boldsymbol{x}}^{\text{D}}} $
    下载: 导出CSV

    表  1  各均衡算法复杂度对比

    算法时间复杂度
    ZF$\mathcal{O}\left( {{M^3}{N^3}} \right)$
    MMSE$\mathcal{O}\left( {{M^3}{N^3}} \right)$
    MP$\mathcal{O}\left( {M{N^2}VL{I_{{\text{MP}}}}} \right)$
    MRC$\mathcal{O}\left( {LMN} \right)$
    HMP$\mathcal{O}\left( {{{\left| Q \right|}^{P\left( {2k + 1} \right)}}} \right)$
    所提算法$\mathcal{O}\left( {{N^3}} \right)$
    下载: 导出CSV

    表  2  仿真系统参数

    参数名称 参数值
    子载波个数(M) 32
    符号个数(N) 16
    载波频率 5.9 GHz
    子载波间隔 15 kHz
    调制方式 QPSK/16QAM/64QAM
    用户移动速度 121.5~607.5 km/h
    信道模型 EVA[23]
    CP长度 7
    天线配置 SISO
    噪声模型 AWGN
    下载: 导出CSV
  • [1] BITHAS P S, KANATAS A G, DA COSTA D B, et al. On the double-generalized gamma statistics and their application to the performance analysis of V2V communications[J]. IEEE Transactions on Communications, 2018, 66(1): 448–460. doi: 10.1109/TCOMM.2017.2757466.
    [2] YANG Lu and ZHANG Wei. Beam tracking and optimization for UAV communications[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5367–5379. doi: 10.1109/TWC.2019.2935972.
    [3] FAN Pingzhi, ZHAO Jing, and CHIH-LIN I. 5G high mobility wireless communications: Challenges and solutions[J]. China Communications, 2016, 13(2): 1–13. doi: 10.1109/CC.2016.7405718.
    [4] 廖勇, 罗渝, 荆亚昊. 6G新型时延多普勒通信范式: OTFS的技术优势、设计挑战、应用与前景[J]. 电子与信息学报, 2024, 46(5): 1827–1842. doi: 10.11999/JEIT231133.

    LIAO Yong, LUO Yu, and JING Yahao. 6G new time-delay Doppler communication paradigm: Technical advantages, design challenges, applications and prospects of OTFS[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1827–1842. doi: 10.11999/JEIT231133.
    [5] YUAN Weijie, LI Shuangyang, WEI Zhiqiang, et al. New delay Doppler communication paradigm in 6G era: A survey of orthogonal time frequency space (OTFS)[J]. China Communications, 2023, 20(6): 1–25. doi: 10.23919/JCC.fa.2022-0578.202306.
    [6] LIU Haoyan, LIU Yanming, YANG Min, et al. On the characterizations of OTFS modulation over multipath rapid fading channel[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 2008–2021. doi: 10.1109/TWC.2022.3208161.
    [7] 廖勇, 李雪. 一种低复杂度的正交时频空系统接收机设计[J]. 电子与信息学报, 2024, 46(6): 2418–2424. doi: 10.11999/JEIT230625.

    LIAO Yong and LI Xue. Low complexity receiver design for orthogonal time frequency space systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2418–2424. doi: 10.11999/JEIT230625.
    [8] LIAO Yong and LI Xue. Joint multi-domain channel estimation based on sparse Bayesian learning for OTFS system[J]. China Communications, 2023, 20(1): 14–23. doi: 10.23919/JCC.2023.01.002.
    [9] 方朝曦, 奚家熹, 王宗欣. 基于迫零均衡的单载波分块传输系统的误符号率分析[J]. 通信学报, 2010, 31(1): 80–84. doi: 10.3969/j.issn.1000-436X.2010.01.012.

    FANG Zhaoxi, XI Jiaxi, and WANG Zongxin. SER performance analysis of single carrier block transmission systems with zero-forcing equalization[J]. Journal on Communications, 2010, 31(1): 80–84. doi: 10.3969/j.issn.1000-436X.2010.01.012.
    [10] LIANG Yu, LI Lingjun, FAN Pingzhi, et al. Doppler resilient orthogonal time-frequency space (OTFS) systems based on index modulation[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–5. doi: 10.1109/VTC2020-Spring48590.2020.9129380.
    [11] SURABHI G D and CHOCKALINGAM A. Low-complexity linear equalization for OTFS modulation[J]. IEEE Communications Letters, 2020, 24(2): 330–334. doi: 10.1109/LCOMM.2019.2956709.
    [12] TIWARI S, DAS S S, and RANGAMGARI V. Low complexity LMMSE receiver for OTFS[J]. IEEE Communications Letters, 2019, 23(12): 2205–2209. doi: 10.1109/LCOMM.2019.2945564.
    [13] RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011.
    [14] 梁瑞璇. OTFS作用域及信号检测算法研究[D]. [硕士论文], 桂林电子科技大学, 2022. doi: 10.27049/d.cnki.ggldc.2022.000976.

    LIANG Ruixuan. Research on OTFS modulation domain and signal detection algorithm[D]. [Master dissertation], Guilin University of Electronic Technology, 2022. doi: 10.27049/d.cnki.ggldc.2022.000976.
    [15] LI Lingjun, LIANG Yu, FAN Pingzhi, et al. Low complexity detection algorithms for OTFS under rapidly time-varying channel[C]. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 2019: 1–5. doi: 10.1109/VTCSpring.2019.8746420.
    [16] XIANG Luping, LIU Yusha, YANG Lieliang, et al. Gaussian approximate message passing detection of orthogonal time frequency space modulation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10999–11004. doi: 10.1109/TVT.2021.3102673.
    [17] 王丹, 李峰, 夏麒煜. 面向正交时频空的低复杂度信号检测算法[J]. 小型微型计算机系统, 2025, 46(2): 443–448. doi: 10.20009/j.cnki.21-1106/TP.2023-0448.

    WANG Dan, LI Feng, and XIA Qiyu. Low complexity signal detection algorithm for orthogonal time frequency space modulation[J]. Journal of Chinese Computer Systems, 2025, 46(2): 443–448. doi: 10.20009/j.cnki.21-1106/TP.2023-0448.
    [18] THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276.
    [19] 韩飞, 纪金伟, 刘成朋, 等. 一种MIMO-OTFS低复杂度信号检测算法[J]. 计算机测量与控制, 2023, 31(2): 190–195, 203. doi: 10.16526/j.cnki.11-4762/tp.2023.02.030.

    HAN Fei, JI Jinwei, LIU Chengpeng, et al. A low complexity MIMO-OTFS signal detection algorithm[J]. Computer Measurement & Control, 2023, 31(2): 190–195, 203. doi: 10.16526/j.cnki.11-4762/tp.2023.02.030.
    [20] LI Xiang, YUAN Weijie, and LI Zhongjie. Hybrid message passing detection for OTFS modulation[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, United Kingdom, 2023: 1–5. doi: 10.1109/WCNC55385.2023.10118784.
    [21] CHENG Junqiang, GAO Hui, XU Wenjun, et al. Low-complexity linear equalizers for OTFS exploiting two-dimensional fast Fourier transform[EB/OL]. https://doi.org/10.48550/arXiv.1909.00524, 2019.
    [22] 刘晨文. 基于OTFS调制的车载毫米波雷达通信一体化技术研究[D]. [硕士论文], 东南大学, 2021. doi: 10.27014/d.cnki.gdnau.2021.000409.

    LIU Chenwen. Research on mmWave automotive integrated radar and communication technology based on OTFS modulation[D]. [Master dissertation], Southeast University, 2021. doi: 10.27014/d.cnki.gdnau.2021.000409.
    [23] 任涛. OTFS接收机关键技术研究[D]. [硕士论文], 电子科技大学, 2024. doi: 10.27005/d.cnki.gdzku.2024.004692.

    REN Tao. Research on key technologies of OTFS receiver[D]. [Master dissertation], University of Electronic Science and Technology of China, 2024. doi: 10.27005/d.cnki.gdzku.2024.004692.
    [24] HUANG Ziyi, CAO Shuai, WEI Hua, et al. Research on channel estimation algorithm based on OTFS system[C]. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 2022: 352–356. doi: 10.1109/ITOEC53115.2022.9734425.
    [25] 蔡志镕. 基于LTE-V2X的信道估计与均衡研究[D]. [硕士论文], 重庆大学, 2022. doi: 10.27670/d.cnki.gcqdu.2022.003101.

    CAI Zhirong. Research on channel estimation and equalization based on LTE-V2X[D]. [Master dissertation], Chongqing University, 2022. doi: 10.27670/d.cnki.gcqdu.2022.003101.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  128
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-08
  • 修回日期:  2025-04-21
  • 网络出版日期:  2025-05-15
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回