高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种结合小波去噪卷积与稀疏Transformer的调制识别方法

郑庆河 刘方霖 余礼苏 姜蔚蔚 黄崇文 桂冠

郑庆河, 刘方霖, 余礼苏, 姜蔚蔚, 黄崇文, 桂冠. 一种结合小波去噪卷积与稀疏Transformer的调制识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT241159
引用本文: 郑庆河, 刘方霖, 余礼苏, 姜蔚蔚, 黄崇文, 桂冠. 一种结合小波去噪卷积与稀疏Transformer的调制识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT241159
ZHENG Qinghe, LIU Fanglin, YU Lisu, JIANG Weiwei, HUANG Chongwen, GUI Guan. A Modulation Recognition Method Combining Wavelet Denoising Convolution and Sparse Transformer[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241159
Citation: ZHENG Qinghe, LIU Fanglin, YU Lisu, JIANG Weiwei, HUANG Chongwen, GUI Guan. A Modulation Recognition Method Combining Wavelet Denoising Convolution and Sparse Transformer[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241159

一种结合小波去噪卷积与稀疏Transformer的调制识别方法

doi: 10.11999/JEIT241159
基金项目: 国家重点研发计划(2018YFF01014304),国家自然科学基金(62401070),山东省重点研发计划(2024TSGC0055),山东省自然科学基金(ZR2019ZD01, ZR2023QF125),山东省高等学校青年创新团队计划(2024KJH005)
详细信息
    作者简介:

    郑庆河:男,副教授,研究方向为无线通信、认知无线电、机器学习、调制识别、信道估计

    刘方霖:男,研究方向为无线通信、认知无线电、深度学习、调制识别

    余礼苏:男,副教授,研究方向为射频光载无线通信、非正交多址接入、无人机通信、人工智能

    姜蔚蔚:男,讲师,研究方向为卫星通信、无线通信、物联网、人工智能

    黄崇文:男,教授,研究方向为6G无线通信、智能协同感知、智能天线

    桂冠:男,教授,研究方向为智能通信、调制识别、深度学习、认知计算

    通讯作者:

    郑庆河 zqh@sdmu.edu.cn

  • 中图分类号: TN929.5

A Modulation Recognition Method Combining Wavelet Denoising Convolution and Sparse Transformer

Funds: The National Key R&D Program (2018YFF01014304), The National Natural Science Foundation of China (62401070), The Shandong Provincial Key R&D Program (2024TSGC0055), The Shandong Provincial Natural Science Foundation (ZR2019ZD01, ZR2023QF125), The Shandong Provincial Youth Innovation Team Plan of Higher Education Institutions (2024KJH005)
  • 摘要: 针对Transformer模型处理时域信号长度受限以及忽略有序特征元素相关性的问题,该文提出一种结合小波去噪卷积与稀疏Transformer的方法用于调制识别。首先,提出可学习的小波去噪卷积帮助深度学习模型提取合适的去噪信号表征,并将自适应的时频特征纳入目标函数的泛函策略中。然后,设计稀疏前馈神经网络替换传统Transformer中的注意力机制,用于对元素关系进行建模,并根据信号域中的少量关键元素对训练过程的梯度进行有效优化。在公开数据集RadioML 2016.10a和RML22的实验结果表明,稀疏Transformer模型能够分别取得63.84%和71.13%的平均分类准确率。与一系列深度学习模型对比,整体分类准确率提升了4%~10%,进一步证明了方法的有效性。此外,超参数消融实验验证了模型组件在复杂移动通信环境中的鲁棒性和实用性。
  • 图  1  小波域中卷积对应的感受野变化

    图  2  稀疏Transformer模型SENet架构

    图  3  稀疏前馈神经网络SFFN结构

    图  4  稀疏Transformer模型在不同SNR条件下的调制分类准确率

    图  5  稀疏Transformer模型在代表性SNR条件下的混淆矩阵

    图  6  稀疏Transformer模型与一系列深度学习模型在不同SNR条件下的调制分类准确率

    图  7  选定的去噪信号表征的小波功率谱分析

    图  8  选定的去噪信号表征的不同小波系数差异

    图  9  稀疏前馈神经网络在选定的去噪信号表征上所关注的采样点

    图  10  稀疏Transformer模型在不同训练集比例下的调制分类准确率

    表  1  调制识别性能对比

    数据集 模型 平均分类准确率 (%) 参数量 (M) 计算量 (GFLOPs) 推理时间 (ms)
    RadioML
    2016.10a
    CGDNet[15] 56.09 0.32 0.37 0.65
    CLDNN[16] 55.46 0.51 6.14 2.58
    DenseNet[17] 53.67 8.45 1.57 0.54
    GRU[18] 56.28 0.65 10.58 4.51
    ResNet[19] 56.44 2.56 4.43 0.57
    本文SENet 63.84 0.36 10.59 8.16
    RML22 DAENet[20] 65.31 8.68 0.91 0.64
    ICNet[21] 64.53 0.57 0.91 0.55
    LSTM[22] 67.24 0.86 14.10 4.65
    MCDNN[23] 66.35 4.56 1.83 1.03
    MCNet[24] 65.49 4.55 2.34 1.19
    本文SENet 71.13 0.36 10.59 7.54
    下载: 导出CSV

    表  2  在测试集上对小波去噪卷积构建的去噪信号表征进行消融

    数据集 S J $\psi $ 平均分类准确率(%) 参数量 计算量(MFLOPs) 推理时间(μs)
    RadioML
    2016.10a
    3 1 Haar 60.51±0.20 47 0.23 0.87±0.07
    5 1 Haar 60.88±0.12 55 0.39 0.94±0.11
    7 2 Haar 60.69±0.44 79 0.61 1.16±0.11
    3 2 db1 60.36±0.60 55 0.25 1.08±0.05
    5 4 db2 60.21±0.73 187 0.45 1.47±0.01
    7 4 db4 60.23±0.65 591 0.65 1.87±0.17
    RML22 3 1 Haar 67.46±0.33 47 0.23 0.86±0.03
    5 1 Haar 67.28±0.65 55 0.39 0.72±0.01
    7 2 Haar 67.33±1.14 79 0.61 1.16±0.14
    3 2 db1 66.51±0.43 55 0.25 1.05±0.14
    5 4 db2 68.78±0.09 187 0.45 1.55±0.43
    7 4 db4 67.78±0.92 591 0.65 1.85±0.03
    下载: 导出CSV

    表  3  对测试集上的稀疏前馈神经网络进行消融

    数据集 D M K FPNs 平均分类准确率(%) 参数量(M) 计算量(GFLOPs) 推理时间(ms)
    RadioML
    2016.10a
    1 1 59.42±0.14 0.29 8.21 5.04±0.06
    1 4 59.56±0.16 0.29 8.32 5.82±0.04
    4 1 59.77±0.25 0.29 8.32 4.89±0.17
    8 4 60.74±0.09 0.32 9.38 6.19±0.01
    4 4 FPN 61.04±0.15 0.41 12.16 5.82±0.00
    8 8 BiFPN 61.48±0.04 0.47 14.37 7.76±0.00
    RML22 1 1 62.71±0.88 0.29 8.21 4.69±0.02
    1 4 65.22±0.29 0.29 8.32 5.60±0.04
    4 1 67.73±0.33 0.29 8.32 5.09±0.07
    8 4 66.39±0.30 0.32 9.38 6.07±0.10
    4 4 FPN 67.84±1.04 0.41 12.16 6.31±0.07
    8 8 BiFPN 69.04±0.02 0.47 14.37 8.11±0.05
    下载: 导出CSV
  • [1] 郭业才, 姚文强. 基于信噪比分类网络的调制信号分类识别算法[J]. 电子与信息学报, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825.

    GUO Yecai and YAO Wenqiang. Modulation signal classification and recognition algorithm based on signal to noise ratio classification network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825.
    [2] 张正宇, 何睿斯, 杨汨, 等. 面向6G的无线信道语义特征及建模[J]. 电子学报, 2025, 53(1): 14–23. doi: 10.12263/DZXB.20240595.

    ZHANG Zhengyu, HE Ruisi, YANG Mi, et al. Semantic characteristics and modeling of wireless channels for 6G[J]. Acta Electronica Sinica, 2025, 53(1): 14–23. doi: 10.12263/DZXB.20240595.
    [3] 张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 41(11): 12–21. doi: 10.11959/j.issn.1000-436x.2020237.

    ZHANG Sicheng, LIN Yun, TU Ya, et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal on Communications, 2020, 41(11): 12–21. doi: 10.11959/j.issn.1000-436x.2020237.
    [4] 孟磊, 曲卫, 马爽, 等. 基于LSTM的雷达脉冲重复间隔调制模式识别[J]. 现代雷达, 2021, 43(1): 50–57. doi: 10.16592/j.cnki.1004-7859.2021.01.008.

    MENG Lei, QU Wei, MA Shuang, et al. Radar PRI Modulation pattern recognition method based on LSTM[J]. Modern Radar, 2021, 43(1): 50–57. doi: 10.16592/j.cnki.1004-7859.2021.01.008.
    [5] KONG Weisi, JIAO Xun, XU Yuhua, et al. A transformer-based contrastive semi-supervised learning framework for automatic modulation recognition[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(4): 950–962. doi: 10.1109/TCCN.2023.3264908.
    [6] HU Mutian, MA Jitong, YANG Zhengyan, et al. Feature fusion convolution-aided transformer for automatic modulation recognition[J]. IEEE Communications Letters, 2023, 27(10): 2643–2647. doi: 10.1109/LCOMM.2023.3298941.
    [7] KONG Weisi, YANG Qinghai, JIAO Xun, et al. A transformer-based CTDNN structure for automatic modulation recognition[C]. The 7th International Conference on Computer and Communications, Chengdu, China, 2021: 159–163. doi: 10.1109/ICCC54389.2021.9674558.
    [8] ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. The 9th International Conference on Learning Representations, 2021.
    [9] ZHANG Qi and DENG Linfeng. An intelligent fault diagnosis method of rolling bearings based on short-time Fourier transform and convolutional neural network[J]. Journal of Failure Analysis and Prevention, 2023, 23(2): 795–811. doi: 10.1007/s11668-023-01616-9.
    [10] ZHOU Jie, MENG Ming, GAO Yunyuan, et al. Classification of motor imagery EEG using wavelet envelope analysis and LSTM networks[C]. Chinese Control and Decision Conference, Shenyang, China, 2018: 5600–5605. doi: 10.1109/CCDC.2018.8408108.
    [11] O'SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022.
    [12] SATHYANARAYANAN V, GERSTOFT P, and EL GAMAL A. RML22: Realistic dataset generation for wireless modulation classification[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7663–7675. doi: 10.1109/TWC.2023.3254490.
    [13] 崔凯, 崔天舒, 朱岩, 等. 基于多尺度时序特征的信号调制样式识别算法[J]. 信号处理, 2021, 37(8): 1507–1517. doi: 10.16798/j.issn.1003-0530.2021.08.018.

    CUI Kai, CUI Tianshu, ZHU Yan, et al. Signal modulation pattern recognition algorithm based on multiscale temporal features[J]. Journal of Signal Processing, 2021, 37(8): 1507–1517. doi: 10.16798/j.issn.1003-0530.2021.08.018.
    [14] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 764–773. doi: 10.1109/ICCV.2017.89.
    [15] NJOKU J N, MOROCHO-CAYAMCELA M E, and LIM W. CGDNet: Efficient hybrid deep learning model for robust automatic modulation recognition[J]. IEEE Networking Letters, 2021, 3(2): 47–51. doi: 10.1109/LNET.2021.3057637.
    [16] WEST N E and O’SHEA T. Deep architectures for modulation recognition[C]. IEEE International Symposium on Dynamic Spectrum Access Networks, Baltimore, USA, 2017: 1–6. doi: 10.1109/DySPAN.2017.7920754.
    [17] LIU Xiaoyu, YANG Diyu, and EL GAMAL A. Deep neural network architectures for modulation classification[C]. The 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 915–919. doi: 10.1109/ACSSC.2017.8335483.
    [18] HONG Dehua, ZHANG Zilong, and XU Xiaodong. Automatic modulation classification using recurrent neural networks[C]. The 3rd IEEE International Conference on Computer and Communications, Chengdu, China, 2017: 695–700. doi: 10.1109/CompComm.2017.8322633.
    [19] LU Xiao, TAO Mengyuan, FU Xue, et al. Lightweight network design based on ResNet structure for modulation recognition[C]. IEEE 94th Vehicular Technology Conference, Norman, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625558.
    [20] KE Ziqi and VIKALO H. Real-time radio technology and modulation classification via an LSTM auto-encoder[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 370–382. doi: 10.1109/TWC.2021.3095855.
    [21] HERMAWAN A P, GINANJAR R R, KIM D S, et al. CNN-based automatic modulation classification for beyond 5G communications[J]. IEEE Communications Letters, 2020, 24(5): 1038–1041. doi: 10.1109/LCOMM.2020.2970922.
    [22] RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433–445. doi: 10.1109/TCCN.2018.2835460.
    [23] XU Jialang, LUO Chunbo, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629–1632. doi: 10.1109/LWC.2020.2999453.
    [24] HUYNH-THE T, HUA C H, PHAM Q V, et al. MCNet: An efficient CNN architecture for robust automatic modulation classification[J]. IEEE Communications Letters, 2020, 24(4): 811–815. doi: 10.1109/LCOMM.2020.2968030.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  41
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-31
  • 修回日期:  2025-05-13
  • 网络出版日期:  2025-05-26

目录

    /

    返回文章
    返回