高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向分布式空地通感一体化网络的无人机3D定位算法

黄逸 邹锐卓 石运梅

黄逸, 邹锐卓, 石运梅. 面向分布式空地通感一体化网络的无人机3D定位算法[J]. 电子与信息学报, 2025, 47(4): 1085-1092. doi: 10.11999/JEIT241152
引用本文: 黄逸, 邹锐卓, 石运梅. 面向分布式空地通感一体化网络的无人机3D定位算法[J]. 电子与信息学报, 2025, 47(4): 1085-1092. doi: 10.11999/JEIT241152
HUANG Yi, ZOU Ruizhuo, SHI Yunmei. A 3D Localization Algorithm for Unmanned Aerial Vehicles in Distributed Air-Ground Integrated Sensing and Communication Networks[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1085-1092. doi: 10.11999/JEIT241152
Citation: HUANG Yi, ZOU Ruizhuo, SHI Yunmei. A 3D Localization Algorithm for Unmanned Aerial Vehicles in Distributed Air-Ground Integrated Sensing and Communication Networks[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1085-1092. doi: 10.11999/JEIT241152

面向分布式空地通感一体化网络的无人机3D定位算法

doi: 10.11999/JEIT241152
基金项目: 国家自然科学基金(62201391, 62101386)
详细信息
    作者简介:

    黄逸:男,助理教授,硕士生导师,研究方向为无人机通信

    邹锐卓:男,硕士生,研究方向为无人机通信

    石运梅:女,助理教授,硕士生导师,研究方向为雷达通信一体化

    通讯作者:

    石运梅 ymshi@tongji.edu.cn

  • 中图分类号: TN929.5

A 3D Localization Algorithm for Unmanned Aerial Vehicles in Distributed Air-Ground Integrated Sensing and Communication Networks

Funds: The National Natural Science Foundation of China (62201391, 62101386)
  • 摘要: 无人机定位不仅能够提高无人机操作的安全性和效率,还为各种低空经济活动提供了技术保障。传统蜂窝定位技术依赖于专用的定位导频,不仅需要大量的导频开销,且在3D定位精度上存在限制。针对该问题,该文提出了一种空地协同的通感一体化网络中的多基站分布式无人机3D定位方法,根据多信号分类算法(MUSIC)得到多个发射信号经过目标无人机折射并到达接收站的时延估计,进而利用椭圆定位算法得到无人机的3D位置估计。进一步地,推导了基于分布式通感一体化网络的无人机3D位置估计的误差克拉美罗下界(CRLB),并与所提位置估计算法的蒙特卡洛性能仿真进行对比,验证了所提算法的性能在高信噪比(SNR)区域能够逼近CRLB。研究结果表明,所提算法能够在无需定位导频的情况下保证目标无人机的3D定位精度,并且利用无人机基站作为通感信号收发机和边缘计算中心辅助地面基站进行目标无人机的3D定位,相较于仅依赖地面基站的传统定位算法,可以有效地提高目标无人机高度的估计精度。
  • 图  1  分布式空地通感一体化网络系统模型

    图  2  位置估计误差随发射功率的变化

    图  3  所提算法估计误差对比

    图  4  路径增益对PEB的影响

    图  5  基于多个接收站/边缘计算中心的位置估计结果

    表  1  仿真参数表

    参数 参数设置
    载波频率 3 GHz
    载波间隔 30 MHz
    目标无人机位置 (200,300,50)
    接收站1位置 (0,0,15)
    接收站2位置 (100,100,15)
    接收站3位置 (–100,–100,15)
    发射站1位置 (400,0,20)
    发射站2位置 (152,469,20)
    发射站3位置 (–400,290,20)
    空中发射站位置 (–400,290,200)
    下载: 导出CSV
  • [1] CAO Xianbin, YANG Peng, ALZENAD M, et al. Airborne communication networks: A survey[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1907–1926. doi: 10.1109/JSAC.2018.2864423.
    [2] YU Peng, LI Yijing, ZHANG Manjun, et al. Self-organized and distributed green resource allocation for space–air–ground IoT networks[J]. IEEE Internet of Things Journal, 2023, 10(11): 9385–9397. doi: 10.1109/JIOT.2022.3222238.
    [3] WU Xuewei, WANG Li, XU Lianming, et al. Joint optimization of UAVs 3-D placement and power allocation in emergency communications[C]. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685172.
    [4] ZHUANG Ke, XU Lianming, LI Liang, et al. GA-MADDPG: A demand-aware UAV network adaptation method for joint communication and positioning in emergency scenarios[C]. 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10118678.
    [5] WANG Jian, VARSHNEY N, GENTILE C, et al. Integrated sensing and communication: Enabling techniques, applications, tools and data sets, standardization, and future directions[J]. IEEE Internet of Things Journal, 2022, 9(23): 23416–23440. doi: 10.1109/JIOT.2022.3190845.
    [6] XIAO Zhiqiang and ZENG Yong. Full-duplex integrated sensing and communication: Waveform design and performance analysis[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–5. doi: 10.1109/WCSP52459.2021.9613663.
    [7] LI Songyi and LIU Zhenyu. A DFRC based on multichannel and spatial information fusion for multiradar communication[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(5): 1423–1427. doi: 10.1109/LAWP.2024.3357855.
    [8] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [9] HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394.
    [10] SOLTANI M, POURAHMADI V, and SHEIKHZADEH H. Pilot pattern design for deep learning-based channel estimation in OFDM systems[J]. IEEE Wireless Communications Letters, 2020, 9(12): 2173–2176. doi: 10.1109/LWC.2020.3016603.
    [11] LIANG Junhui, HE Jin, and YU Wenxian. 3-D parameterized multipath channel estimation for massive MIMO–OFDM systems[J]. IEEE Systems Journal, 2022, 16(3): 4094–4105. doi: 10.1109/JSYST.2022.3152730.
    [12] LYU Zhonghao, ZHU Guangxu, and XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2424–2440. doi: 10.1109/TWC.2022.3211533.
    [13] CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Performance of joint sensing-communication cooperative sensing UAV network[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15545–15556. doi: 10.1109/TVT.2020.3042466.
    [14] MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623.
    [15] CUI Yanpeng, FENG Zhiyong, ZHANG Qixun, et al. Toward trusted and swift UAV communication: ISAC-enabled dual identity mapping[J]. IEEE Wireless Communications, 2023, 30(1): 58–66. doi: 10.1109/MWC.003.2200207.
    [16] ZHAO Jingcheng, FU Xinru, YANG Zongkai, et al. Radar-assisted UAV detection and identification based on 5G in the Internet of Things[J]. Wireless Communications and Mobile Computing, 2019, 2019: 2850263. doi: 10.1155/2019/2850263.
    [17] AI Xiaofeng, ZHANG Linyu, ZHENG Yuqing, et al. Passive detection experiment of UAV based on 5G new radio signal[C]. 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 2021: 2124–2129. doi: 10.1109/PIERS53385.2021.9695141.
    [18] YANG Xiaoqi, HUO Kai, JIANG Weidong, et al. A passive radar system for detecting UAV based on the OFDM communication signal[C]. 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 2016: 2757–2762. doi: 10.1109/PIERS.2016.7735118.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  49
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-04-15
  • 网络出版日期:  2025-04-17
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回