高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯过程回归误差标定辅助的室内惯性测量单元与超宽带融合定位算法研究

马鑫鹏 陈宇 崔志成 李兴广 崔炜

马鑫鹏, 陈宇, 崔志成, 李兴广, 崔炜. 高斯过程回归误差标定辅助的室内惯性测量单元与超宽带融合定位算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT241145
引用本文: 马鑫鹏, 陈宇, 崔志成, 李兴广, 崔炜. 高斯过程回归误差标定辅助的室内惯性测量单元与超宽带融合定位算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT241145
MA Xinpeng, CHEN Yu, CUI Zhicheng, LI Xingguang, CUI Wei. Research on Fusion Localization Algorithm of Indoor UWB and IMU Assisted by GPR Error Calibration[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241145
Citation: MA Xinpeng, CHEN Yu, CUI Zhicheng, LI Xingguang, CUI Wei. Research on Fusion Localization Algorithm of Indoor UWB and IMU Assisted by GPR Error Calibration[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241145

高斯过程回归误差标定辅助的室内惯性测量单元与超宽带融合定位算法研究

doi: 10.11999/JEIT241145 cstr: 32379.14.JEIT241145
基金项目: 吉林省科技发展计划项目(20220203066SF)
详细信息
    作者简介:

    马鑫鹏:男,硕士,研究方向为室内UWB与IMU融合定位

    陈宇:女,副教授,研究方向为计算机视觉

    崔志成:男,硕士,研究方向为室内视觉与UWB融合定位

    李兴广:男,教授,研究方向为智能信息处理

    崔炜:男,副教授,研究方向为人工智能和模式识别

    通讯作者:

    陈宇 assma@163.com

  • 中图分类号: TN967.2

Research on Fusion Localization Algorithm of Indoor UWB and IMU Assisted by GPR Error Calibration

Funds: Jilin Province Science and Technology Development Plan Project (20220203066SF)
  • 摘要: 室内环境下超宽带(UWB)误差标定困难,静态和动态目标在视距和非视距情况下的定位精度均难以保证。为此该文提出了一种高斯过程回归(GPR)误差标定辅助的室内惯性测量单元(IMU)与UWB融合定位算法(GIU-EKF)。在视距情况下通过对视距环境UWB测距误差进行采样分析,建立GPR误差标定模型关联二维坐标与测距误差。使用误差标定模型计算所有坐标点UWB测距值的概率分布集合,利用待测点范围内的坐标样本及其归一化概率计算测距拟合值,实时抑制视距环境测距误差。当UWB测距增量超过阈值判别为非视距环境。非视距情况下通过子级扩展卡尔曼滤波器(EKF)融合UWB信息和短时IMU信息实时修正运动过程中测距值的非视距误差,并将其送入主EKF实现运动状态估计更新。实验结果表明,在视距情况下标签处于静态和动态时经GPR粗差修正后的定位误差较修正前分别下降64%和58%,GIU-EKF算法在论文所述的3种非视距环境下对低速运动目标能保持稳健的运动状态估计,平均定位误差达到7.5 cm;运动速度为0.2~0.8 m/s的标签,定位误差小于10 cm。
  • 图  1  融合定位模型架构

    图  2  实验设备与场景

    图  3  LOS定位数据采集轨道

    图  4  运动目标NLOS定位数据采集轨道

    图  5  基站C误差标定模型

    图  6  静态定位结果

    图  7  LOS运动目标定位

    图  8  NLOS环境定位结果

    图  9  轨道2 IMU修正前后测距值

    图  10  速度与位置估计

    图  11  初始状态异常实验

    表  1  4个基站高斯模型优化后的核参数和对应的误差函数值

    基站 $ {\mathrm{\sigma }}_{\mathrm{l}} $ $ {\sigma }_{\mathrm{f}} $ $ \sigma $ $ \beta $ $ {E}_{\mathrm{r}\mathrm{m}\mathrm{s}\mathrm{e}} $ (cm)
    A 500 46.49 80 –259.84 6.499
    B 600 21.28 63 –143.58 5.217
    C 550 24.57 52 –215.22 5.160
    D 550 30.79 78 –217.79 4.863
    下载: 导出CSV

    表  2  各基站修正前后测距误差RMS(cm)

    基站编号 轨道1 轨道2 轨道3 轨道4
    修正前/后 下降(%) 修正前/后 下降(%) 修正前/后 下降(%) 修正前/后 下降(%)
    A 25.0/5.8 77 26.3/4.6 83 33.6/5.7 83 21.3/10.5 51
    B 16.7/12.1 28 12.8/10.3 20 22.4/10.6 53 15.5/3.8 75
    C 23.6/3.2 86 20.2/3.2 84 16.5/13.1 21 17.1/5.8 66
    D 22.8/7.1 69 26.4/5.9 78 23.1/3.8 84 26.2/4.2 84
    下载: 导出CSV

    表  3  4条轨道定位误差RMS(cm)

    轨道编号 LS EKF
    修正前/后 下降(%) 修正前/后 下降(%)
    1 33.8/17.5 48 27.8/12.1 56
    2 30.4/15.4 49 28.6/7.7 73
    3 44/31.2 29 16.9/11.1 34
    4 16.4/5 70 18.9/5.8 69
    误差均值 29.3/14.3 - 22.4/8.8 -
    下载: 导出CSV

    表  4  NLOS环境4条轨道3种定位算法定位误差RMS(cm)

    轨道编号GP-LSGP-EKFGIU-EKF
    116.810.89.8
    217.228.95.4
    334.68.18.2
    47.49.66.9
    下载: 导出CSV

    表  5  不同速度下定位误差RMS(cm)

    速度(cm/s)2.222446688
    本文算法6.76.36.46.56.2
    传统算法24.823.624.125.726.4
    下载: 导出CSV
  • [1] ZARE M, BATTULWAR R, SEAMONS J, et al. Applications of wireless indoor positioning systems and technologies in underground mining: A review[J]. Mining, Metallurgy & Exploration, 2021, 38(6): 2307–2322. doi: 10.1007/s42461-021-00476-x.
    [2] 闫大禹, 宋伟, 王旭丹, 等. 国内室内定位技术发展现状综述[J]. 导航定位学报, 2019, 7(4): 5–12. doi: 10.3969/j.issn.2095-4999.2019.04.002.

    YAN Dayu, SONG Wei, WANG Xudan, et al. Review of development status of indoor location technology in China[J]. Journal of Navigation and Positioning, 2019, 7(4): 5–12. doi: 10.3969/j.issn.2095-4999.2019.04.002.
    [3] DESPAUX F, VAN DEN BOSSCHE A, JAFFRÈS-RUNSER K, et al. N-TWR: An accurate time-of-flight-based N-ary ranging protocol for Ultra-Wide band[J]. Ad Hoc Networks, 2018, 79: 1–19. doi: 10.1016/j.adhoc.2018.05.016.
    [4] FENG Daquan, WANG Chunqi, HE Chunlong, et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation[J]. IEEE Internet of Things Journal, 2020, 7(4): 3133–3146. doi: 10.1109/JIOT.2020.2965115.
    [5] ROSS A and JOUFFROY J. Remarks on the observability of single beacon underwater navigation[C]. International Symposium on Unmanned Untethered Submersible Technology, Durham, USA, 2005.
    [6] LI Jianan, NING Zian, HE Shaoming, et al. Three-dimensional bearing-only target following via observability-enhanced helical guidance[J]. IEEE Transactions on Robotics, 2023, 39(2): 1509–1526. doi: 10.1109/TRO.2022.3218268.
    [7] NING Zian, ZHANG Yin, LI Jianan, et al. A bearing-angle approach for unknown target motion analysis based on visual measurements[J]. The International Journal of Robotics Research, 2024, 43(8): 1228–1249. doi: 10.1177/02783649241229172.
    [8] LEE S H and SEO D H. Scalable Wi-Fi fingerprinting localization by deep similarity network[J]. IEEE Internet of Things Journal, 2025, 12(4): 4197–4206. doi: 10.1109/JIOT.2024.3484456.
    [9] BROSSARD M, BARRAU A, and BONNABEL S. AI-IMU dead-reckoning[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 585–595. doi: 10.1109/TIV.2020.2980758.
    [10] DECAWAVE. Sources of error in DW1000 based two-way ranging (TWR) schemes[EB/OL]. https://www.qorvo.com/products/d/da008446, 2024.
    [11] 肖庭杨, 章迪. 基于BP神经网络的厘米级超宽带测距误差改正模型设计与实验[J]. 全球定位系统, 2021, 46(4): 52–58. doi: 10.12265/j.gnss.2021032901.

    XIAO Tingyang and ZHANG Di. Design and experiment of centimeter UWB ranging error correction model based on BP neural network[J]. GNSS World of China, 2021, 46(4): 52–58. doi: 10.12265/j.gnss.2021032901.
    [12] DONG Mengyao, QI Yihong, WANG Xianbin, et al. A non-line-of-sight mitigation method for indoor ultra-wideband localization with multiple walls[J]. IEEE Transactions on Industrial Informatics, 2023, 19(7): 8183–8195. doi: 10.1109/TII.2022.3217533.
    [13] ZHOU Boli, FANG Hongbin, and XU Jian. UWB-IMU-odometer fusion localization scheme: Observability analysis and experiments[J]. IEEE Sensors Journal, 2023, 23(3): 2550–2564. doi: 10.1109/JSEN.2022.3228296.
    [14] CAO Yanjun, YANG Chenhao, LI Rui, et al. Accurate position tracking with a single UWB anchor[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020: 2344–2350. doi: 10.1109/ICRA40945.2020.9197345.
    [15] LIU Jiageng and GUO Ge. Vehicle localization during GPS outages with extended Kalman filter and deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7503410. doi: 10.1109/TIM.2021.3097401.
    [16] 胡文龙, 周宇飞, 宋全军, 等. 基于UWB和IMU信息融合的室内定位算法研究[J]. 制造业自动化, 2023, 45(2): 193–197,213. doi: 10.3969/j.issn.1009-0134.2023.02.039.

    HU Wenlong, ZHOU Yufei, SONG Quanjun, et al. Research on indoor localization algorithm based on UWB and IMU information fusion[J]. Manufacturing Automation, 2023, 45(2): 193–197,213. doi: 10.3969/j.issn.1009-0134.2023.02.039.
    [17] SI Minghao, WANG Yunjia, SEOW C K, et al. An adaptive weighted Wi-Fi FTM-based positioning method in an NLOS environment[J]. IEEE Sensors Journal, 2022, 22(1): 472–480. doi: 10.1109/JSEN.2021.3124275.
    [18] JUÁREZ A, FORTES S, COLIN E, et al. UWB-based positioning system for indoor sports[C]. 2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nuremberg, Germany, 2023: 1–6. doi: 10.1109/IPIN57070.2023.10332477.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  56
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-07-28
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回