高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双忆阻类脑混沌神经网络及其在IoMT数据隐私保护中应用

蔺海荣 段晨星 邓晓衡 GeyongMin

蔺海荣, 段晨星, 邓晓衡, GeyongMin. 双忆阻类脑混沌神经网络及其在IoMT数据隐私保护中应用[J]. 电子与信息学报, 2025, 47(7): 2194-2210. doi: 10.11999/JEIT241133
引用本文: 蔺海荣, 段晨星, 邓晓衡, GeyongMin. 双忆阻类脑混沌神经网络及其在IoMT数据隐私保护中应用[J]. 电子与信息学报, 2025, 47(7): 2194-2210. doi: 10.11999/JEIT241133
LIN Hairong, DUAN Chenxing, DENG Xiaoheng, Geyong Min. Dual-Memristor Brain-Like Chaotic Neural Network and Its Application in IoMT Data Privacy Protection[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2194-2210. doi: 10.11999/JEIT241133
Citation: LIN Hairong, DUAN Chenxing, DENG Xiaoheng, Geyong Min. Dual-Memristor Brain-Like Chaotic Neural Network and Its Application in IoMT Data Privacy Protection[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2194-2210. doi: 10.11999/JEIT241133

双忆阻类脑混沌神经网络及其在IoMT数据隐私保护中应用

doi: 10.11999/JEIT241133 cstr: 32379.14.JEIT241133
基金项目: 国家自然科学基金(62201204, 62373372),湖南省自然科学基金(2023JJ40168, 2023JJ30696)
详细信息
    作者简介:

    蔺海荣:男,副教授,研究方向为混沌密码学、隐私保护、忆阻神经网络、类脑计算

    段晨星:男,硕士生,研究方向为混沌密码学、深度学习

    邓晓衡:男,教授,研究方向为边缘计算、物联网、深度学习、网络与信息安全

    GeyongMin:男,教授,研究方向为无线网络与边缘计算、大数据处理、数据孪生

    通讯作者:

    邓晓衡 dxh@csu.edu.cn

  • 中图分类号: TN918.4; TP309.7

Dual-Memristor Brain-Like Chaotic Neural Network and Its Application in IoMT Data Privacy Protection

Funds: The National Natural Science Foundation of China (62201204, 62373372), The Natural Science Foundation of Hunan (2023JJ40168, 2023JJ30696)
  • 摘要: 近年来,医疗数据泄露频发,严重威胁患者隐私与健康安全,亟需有效的解决方案以保护医疗数据在传输过程中的隐私与安全性。该文提出了一种基于双忆阻类脑混沌神经网络的医疗物联网(Internet of Medical Things, IoMT)数据隐私保护方法,以应对这一挑战。首先,利用忆阻器的突触仿生特性,构建了一种基于Hopfield神经网络的双忆阻类脑混沌神经网络模型,并通过分岔图、Lyapunov指数谱、相图、时域图及吸引盆等非线性动力学工具,深入揭示了模型的复杂混沌动力学特性。研究结果表明,该网络不仅展现出复杂的网格多结构混沌吸引子特性,还具有平面初值位移调控能力,从而显著增强了其密码学应用潜力。为了验证其实用性与可靠性,基于微控制器单元(MCU)搭建了硬件平台,并通过硬件实验进一步确认了模型的复杂动力学行为。基于此模型,该文设计了一种结合双忆阻类脑混沌神经网络复杂混沌特性的高效IoMT数据隐私保护方法。在此基础上,对彩色医疗图像数据的加密效果进行了全面的安全性分析。实验结果表明,该方法在关键性能指标上表现优异,包括大密钥空间、低像素相关性、高密钥敏感性,以及对噪声与数据丢失攻击的强鲁棒性。该研究为IoMT环境下的医疗数据隐私保护提供了一种创新且有效的解决方案,为未来的智能医疗安全技术发展奠定了坚实基础。
  • 图  1  忆阻器特征

    图  2  双忆阻Hopfield神经网络拓扑连接结构图

    图  3  随忆阻突触耦合强度(ρ1, ρ2)变化的动力学行为

    图  4  具有不同数目结构的$\varphi_1 $单方向多结构吸引子行为

    图  5  具有不同数目结构的$\varphi_2 $单方向多结构吸引子行为

    图  6  网格多结构混沌吸引子

    图  7  随忆阻突触初值($\varphi_{20} $)变化的动力学行为

    图  8  随忆阻突触初值($\varphi_{10} $)变化的动力学行为

    图  9  随忆阻突触初值($\varphi_{10} $, $\varphi_{20} $)变化的动力学行为

    图  10  基于微控制器的硬件平台和观察到的$\varphi_{1} $方向上多结构吸引子

    图  11  在示波器上观察到的$\varphi_1 $方向上,$\varphi_2 $方向上和网格多结构的混沌吸引子

    图  12  基于双忆阻类脑混沌神经网络的IoMT数据隐私保护方法

    图  13  医疗图像加密测试结果

    图  14  密钥敏感性测试结果

    图  15  噪声与数据丢失攻击测试结果

    表  1  忆阻突触控制参数与网格吸引子关系

    N1/M1 $\varphi_1 $方向(n) N2/M2 $\varphi_2 $方向(m)
    0 1/2 0 1/2
    1 3/4 1 3/4
    2 5/6 2 5/6
    N1/M1 (2N1+1)/(2M1+2) N2/M2 (2N2+1)/(2M2+2)
    下载: 导出CSV

    表  2  不同加密方法的密钥空间比较

    参考文献 密钥空间
    文献[26] 2504
    文献[31] 2105
    文献[34] 2144
    文献[36] 2456
    本文 2768
    下载: 导出CSV

    表  3  原图像与加密图像的相关系数和信息熵

    相关系数 信息熵 差分攻击
    图像 垂直/水平/对角线 RGB 红R/绿G/蓝B NPCR/UACI
    大脑 原图 0.946871/0.944926/0.934295 5.5487 6.4159/4.9046/4.9319 99.6907/32.8161
    加密图 0.0113173/0.006627/–0.017526 7.9996 7.9993/7.9992/7.9993
    红细胞 原图 0.905427/0.919528/0.869007 7.7647 6.9389/76146/7.6832 99.5060/34.6095
    加密图 0.016132/0.006560/0.007012 7.9998 7.9993/7.9993/7.9994
    视网膜 原图 0.691344/0.714074/0.640713 6.1917 6.0691/6.4005/5.8215 99.5505/34.7912
    加密图 0.006482/0.005781/0.011470 7.9997 7.9993/7.9993/7.9994
    病毒 原图 0.961282/0.962064/0.945707 5.2211 5.0190/4.5569/5.0514 99.7292/37.3502
    加密图 0.015224/–0.001286/–0.010731 7.9996 7.9994/7.9994/7.9993
    下载: 导出CSV

    表  4  不同彩色图像加密方法的信息熵比较

    文献 信息熵
    文献[9] 7.9994
    文献[12] 7.9994
    文献[26] 7.9977
    文献[36] 7.9896
    本文 7.9998
    下载: 导出CSV

    表  5  不同加密方法的密钥敏感性比较

    文献 密钥敏感度
    文献[26] 10–4
    文献[31] 10–10
    文献[34] 10–15
    文献[36] 10–16
    本文 10–16
    下载: 导出CSV

    表  6  不同加密方法的抵抗噪声与数据丢失攻击能力比较

    文献 抵抗噪声与数据丢失
    文献[5]
    文献[26]
    文献[29]
    本文
    下载: 导出CSV

    表  7  NIST测试

    统计测试 通过率 P 结果
    频率测试 0.99 0.474 通过
    块内频数测试 0.98 0.596 通过
    动向测试 1.00 0.419 通过
    最大游程测试 1.00 0.718 通过
    二进制矩阵秩测试 0.98 0.384 通过
    频谱测试 1.00 0.868 通过
    非重叠字匹配测试 0.99 0.637 通过
    重叠字匹配测试 0.97 0.249 通过
    毛勒通用统计测试 0.99 0.141 通过
    线性复杂度测试 0.99 0.485 通过
    系列测试 0.98 0.356 通过
    近似熵测试 1.00 0.299 通过
    累积测试 0.97 0.323 通过
    随机游程测试 0.99 0.759 通过
    随机游程变量测试 0.97 0.367 通过
    下载: 导出CSV
  • [1] GHUBAISH A, SALMAN T, ZOLANVARI M, et al. Recent advances in the internet-of-medical-things (IoMT) systems security[J]. IEEE Internet of Things Journal, 2021, 8(11): 8707–8718. doi: 10.1109/JIOT.2020.3045653.
    [2] AHMED S F, ALAM M S B, AFRIN S, et al. Insights into internet of medical things (IoMT): Data fusion, security issues and potential solutions[J]. Information Fusion, 2024, 102: 102060. doi: 10.1016/J.INFFUS.2023.102060.
    [3] 陈友荣, 陈浩, 韩蒙, 等. 基于信用等级划分的医疗数据安全共识算法[J]. 电子与信息学报, 2022, 44(1): 279–287. doi: 10.11999/JEIT200893.

    CHEN Yourong, CHEN Hao, HAN Meng, et al. Security consensus algorithm of medical data based on credit rating[J]. Journal of Electronics & Information Technology, 2022, 44(1): 279–287. doi: 10.11999/JEIT200893.
    [4] JAVAID M, HALEEM A, SINGH R P, et al. Towards insighting cybersecurity for healthcare domains: A comprehensive review of recent practices and trends[J]. Cyber Security and Applications, 2023, 1: 100016. doi: 10.1016/J.CSA.2023.100016.
    [5] ZHANG Bowen and LIU Lingfeng. Chaos-based image encryption: Review, application, and challenges[J]. Mathematics, 2023, 11(11): 2585. doi: 10.3390/math11112585.
    [6] LIU Huipeng, TENG Lin, ZHANG Yijia, et al. Mutil-medical image encryption by a new spatiotemporal chaos model and DNA new computing for information security[J]. Expert Systems with Applications, 2024, 235: 121090. doi: 10.1016/j.eswa.2023.121090.
    [7] MAN Zhenlong, GAO Chang, DAI Yu, et al. Dynamic rotation medical image encryption scheme based on improved Lorenz chaos[J]. Nonlinear Dynamics, 2024, 112(15): 13571–13597. doi: 10.1007/s11071-024-09732-3.
    [8] 周双, 尹彦力, 王诗雨, 等. n维离散超混沌系统及其在音频加密中的应用[J]. 物理学报, 2024, 73(21): 210501. doi: 10.7498/aps.73.20241028.

    ZHOU Shuang, YIN Yanli, WANG Shiyu, et al. An n-dimensional discrete hyperchaotic system and its application in audio encryption[J]. Acta Physica Sinica, 2024, 73(21): 210501. doi: 10.7498/aps.73.20241028.
    [9] HUA Zhongyun, ZHU Zhihua, YI Shuang, et al. Cross-plane colour image encryption using a two-dimensional logistic tent modular map[J]. Information Sciences, 2021, 546: 1063–1083. doi: 10.1016/j.ins.2020.09.032.
    [10] BAO Han, HUA Zhongyun, WANG Ning, et al. Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 1132–1140. doi: 10.1109/TII.2020.2992438.
    [11] LI Chengqing, TAN Kai, FENG Bingbing, et al. The graph structure of the generalized discrete Arnold's cat map[J]. IEEE Transactions on Computers, 2022, 71(2): 364–377. doi: 10.1109/TC.2021.3051387.
    [12] FENG W, WANG Q, LIU H, et al. Exploiting newly designed fractional-order 3D Lorenz chaotic system and 2D discrete polynomial hyper-chaotic map for high-performance multi-image encryption[J]. Fractal and Fractional, 2023, 7(12): 887. doi: 10.3390/fractalfract7120887.
    [13] STANKEVICH N and VOLKOV E. Chaos–hyperchaos transition in three identical quorum-sensing mean-field coupled ring oscillators[J]. Chaos, 2021, 31(10): 103112. doi: 10.1063/5.0056907.
    [14] 李春彪, 李泳新, 仲庆, 等. 忆阻超混沌映射的可调控性设计及光纤保密通信系统构建[J]. 通信学报, 2024, 45(4): 171–184. doi: 10.11959/j.issn.1000-436x.2024086.

    LI Chunbiao, LI Yongxin, ZHONG Qing, et al. Controllability design of a memristive hyperchaotic map and the construction of optical fiber secure communication system[J]. Journal on Communications, 2024, 45(4): 171–184. doi: 10.11959/j.issn.1000-436x.2024086.
    [15] LAI Qiang and CHEN Zhijie. Grid-scroll memristive chaotic system with application to image encryption[J]. Chaos, Solitons & Fractals, 2023, 170: 113341. doi: 10.1016/j.chaos.2023.113341.
    [16] HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088–3092. doi: 10.1073/pnas.81.10.3088.
    [17] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932.
    [18] 董哲康, 杜晨杰, 林辉品, 等. 基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法[J]. 电子与信息学报, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868.

    DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868.
    [19] SCHRANGHAMER T F, OBEROI A, and DAS S. Graphene memristive synapses for high precision neuromorphic computing[J]. Nature Communications, 2020, 11(1): 5474. doi: 10.1038/s41467-020-19203-z.
    [20] YAO Wei, WANG Chunhua, SUN Yichuang, et al. Event-triggered control for robust exponential synchronization of inertial memristive neural networks under parameter disturbance[J]. Neural Networks, 2023, 164: 67–80. doi: 10.1016/j.neunet.2023.04.024.
    [21] HE Shaobo, LIU Jun, WANG Huihai, et al. A discrete memristive neural network and its application for character recognition[J]. Neurocomputing, 2023, 523: 1–8. doi: 10.1016/J.NEUCOM.2022.12.014.
    [22] CHEN Chengjie, MIN Fuhong, CAI Jianming, et al. Memristor synapse-driven simplified Hopfield neural network: Hidden dynamics, attractor control, and circuit implementation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(5): 2308–2319. doi: 10.1109/TCSI.2024.3349451.
    [23] LAI Qiang, WAN Zhiqiang, and KUATE P D K. Generating grid multi-scroll attractors in memristive neural networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(3): 1324–1336. doi: 10.1109/TCSI.2022.3228566.
    [24] HUANG Lilian, ZHANG Yue, XIANG Jianhong, et al. Extreme multistability in a Hopfield neural network based on two biological neuronal systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(11): 4568–4572. doi: 10.1109/TCSII.2022.3183340.
    [25] 王梦蛟, 杨琛, 贺少波, 等. 一种新型复合指数型局部有源忆阻器耦合的Hopfield神经网络[J]. 物理学报, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888.

    WANG Mengjiao, YANG Chen, HE Shaobo, et al. A novel compound exponential locally active memristor coupled Hopfield neural network[J]. Acta Physica Sinica, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888.
    [26] YU Fei, SHEN Hui, YU Qiulin, et al. Privacy protection of medical data based on multi-scroll memristive Hopfield neural network[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(2): 845–858. doi: 10.1109/TNSE.2022.3223930.
    [27] LIN Hairong, WANG Chunhua, XU Cong, et al. A memristive synapse control method to generate diversified multistructure chaotic attractors[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(3): 942–955. doi: 10.1109/TCAD.2022.3186516.
    [28] LAI Qiang, YANG Liang, HU Genwen, et al. Constructing multiscroll memristive neural network with local activity memristor and application in image encryption[J]. IEEE Transactions on Cybernetics, 2024, 54(7): 4039–4048. doi: 10.1109/TCYB.2024.3377011.
    [29] RANI N, SHARMA S R, and MISHRA V. Grayscale and colored image encryption model using a novel fused magic cube[J]. Nonlinear Dynamics, 2022, 108(2): 1773–1796. doi: 10.1007/s11071-022-07276-y.
    [30] LI Xiaoxiao, GUO Xiaopeng, HAN Pengfei, et al. Laplacian redecomposition for multimodal medical image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6880–6890. doi: 10.1109/TIM.2020.2975405.
    [31] ANAND A. A dimensionality reduction-based approach for secured color image watermarking[J]. Soft Computing, 2024, 28(6): 5137–5154. doi: 10.1007/s00500-023-09233-2.
    [32] MA Jun, HE Yuting, LI Feifei, et al. Segment anything in medical images[J]. Nature Communications, 2024, 15(1): 654. doi: 10.1038/s41467-024-44824-z.
    [33] GUAN Hao and LIU Mingxia. Domain adaptation for medical image analysis: A survey[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(3): 1173–1185. doi: 10.1109/TBME.2021.3117407.
    [34] ZHOU Nanrun, HU Longlong, HUANG Zhiwen, et al. Novel multiple color images encryption and decryption scheme based on a bit-level extension algorithm[J]. Expert Systems with Applications, 2024, 238: 122052. doi: 10.1016/j.eswa.2023.122052.
    [35] 宋昭阳, 王一诺, 王浩文, 等. 基于Hopfield网络“伪吸引子”与交替量子随机行走的抗攻击彩色图像加密方案[J]. 电子学报, 2023, 51(8): 2030–2042. doi: 10.12263/DZXB.20211391.

    SONG Zhaoyang, WANG Yinuo, WANG Haowen, et al. Anti-attack color image encryption scheme based on hopfield network “Pseudo Attractor” and alternating quantum random walk[J]. Acta Electronica Sinica, 2023, 51(8): 2030–2042. doi: 10.12263/DZXB.20211391.
    [36] TENG Lin, WANG Xingyuan, YANG Feifei, et al. Color image encryption based on cross 2D hyperchaotic map using combined cycle shift scrambling and selecting diffusion[J]. Nonlinear Dynamics, 2021, 105(2): 1859–1876. doi: 10.1007/s11071-021-06663-1.
    [37] 董哲康, 钱智凯, 周广东, 等. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.

    DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, et al. Memory circuit design, implementation and analysis based on memristor full-function Pavlov associative[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  225
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-04-11
  • 网络出版日期:  2025-04-11
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回