高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向焦虑改善的睡眠脑电信号深度学习分析模型研究

黄辰 马耀龙 张龑 王时绘 杨超 宋建华 陈侃松 杨伟平

黄辰, 马耀龙, 张龑, 王时绘, 杨超, 宋建华, 陈侃松, 杨伟平. 面向焦虑改善的睡眠脑电信号深度学习分析模型研究[J]. 电子与信息学报, 2025, 47(8): 2935-2944. doi: 10.11999/JEIT241123
引用本文: 黄辰, 马耀龙, 张龑, 王时绘, 杨超, 宋建华, 陈侃松, 杨伟平. 面向焦虑改善的睡眠脑电信号深度学习分析模型研究[J]. 电子与信息学报, 2025, 47(8): 2935-2944. doi: 10.11999/JEIT241123
HUANG Chen, MA Yaolong, ZHANG Yan, WANG Shihui, YANG Chao, SONG Jianhua, CHEN Kansong, YANG Weiping. Research on Deep Learning Analysis Model of Sleep ElectroEncephalography Signals for Anxiety Improvement[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2935-2944. doi: 10.11999/JEIT241123
Citation: HUANG Chen, MA Yaolong, ZHANG Yan, WANG Shihui, YANG Chao, SONG Jianhua, CHEN Kansong, YANG Weiping. Research on Deep Learning Analysis Model of Sleep ElectroEncephalography Signals for Anxiety Improvement[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2935-2944. doi: 10.11999/JEIT241123

面向焦虑改善的睡眠脑电信号深度学习分析模型研究

doi: 10.11999/JEIT241123 cstr: 32379.14.JEIT241123
基金项目: 武汉市知识创新专项项目(202311901251001),湖北省科技计划重大科技专项(2024BAA008),湖北省重大攻关项目(2023BAA018),深圳市科技攻关重点项目(2020N061)
详细信息
    作者简介:

    黄辰:男,教授,研究方向为计算机科学

    马耀龙:男,硕士生,研究方向为计算机科学

    张龑:男,教授,研究方向为计算机科学

    王时绘:男,教授,研究方向为计算机科学

    杨超:男,教授,研究方向为计算机科学

    宋建华:女,教授,研究方向为软件工程

    陈侃松:男,教授,研究方向为软件工程

    杨伟平:女,教授,研究方向为脑与认知

    通讯作者:

    张龑 zhangyan@hubu.edu.cn

  • 中图分类号: TN911.7; TP391

Research on Deep Learning Analysis Model of Sleep ElectroEncephalography Signals for Anxiety Improvement

Funds: Wuhan Knowledge Innovation Special Project(202311901251001), Hubei Province Science and Technology Plan Major Science and Technology Project (2024BAA008), The Major Research Projects in Hubei Province(2023BAA018), The Key Projects of Science and Technology in Shenzhen (2020N061)
  • 摘要: 焦虑是一种常见的情绪障碍,其严重时会显著影响个体的身心健康。已有研究表明,睡眠与焦虑存在双向调控关系,高质量睡眠有助于缓解焦虑情绪。为提高在睡眠环境下对焦虑患者脑电信号的分析准确率,该文提出一种改进型特征金字塔网络(IFPN)模型。在IFPN模型中,首先,对焦虑患者睡眠前后脑电信号进行预处理,采用脑电信号标准化和特征金字塔网络去噪,以统一脑电信号尺度并去除噪声。然后,将预处理后焦虑患者的睡眠脑电数据转换为脑熵地形图,以强化在睡眠环境下对焦虑改善的脑电信号分析能力,接着,利用改进型特征金字塔网络对脑熵地形图进行特征提取,生成特征脑地形图。最后,将特征脑地形图输入到ResNet-50进行脑电信号分析。本文在开源数据集上验证了IFPN模型的有效性。实验结果表明,在睡眠环境下,采用所提模型能够进一步提升针对焦虑脑电信号的分析能力和准确率,从而为分析睡眠对于焦虑的改善作用提供深入的理论和实验支撑。
  • 图  1  改进型特征金字塔网络模型图

    图  2  特征提取模块步骤图

    图  3  分类预测模块流程图

    图  4  睡眠前后脑电功率变化

    图  5  STFN-BRPS模型准确率

    图  6  IFPN模型准确率

  • [1] VAZARD J. Feeling the unknown: Emotions of uncertainty and their valence[J]. Erkenntnis, 2024, 89(4): 1275–1294. doi: 10.1007/s10670-022-00583-1.
    [2] LABRAGUE L J. Pandemic fatigue and clinical nurses’ mental health, sleep quality and job contentment during the COVID‐19 pandemic: The mediating role of resilience[J]. Journal of Nursing Management, 2021, 29(7): 1992–2001. doi: 10.1111/jonm.13383.
    [3] ASTUTI R D, SUHARDI B, LAKSONO P W, et al. Investigating the relationship between noise exposure and human cognitive performance: attention, stress, and mental workload based on EEG signals using power spectrum density[J]. Applied Sciences, 2024, 14(7): 2699. doi: 10.3390/app14072699.
    [4] ZHANG Bingtao, WANG Chonghui, YAN Guanghui, et al. Functional brain network based on improved ensemble empirical mode decomposition of EEG for anxiety analysis and detection[J]. Biomedical Signal Processing and Control, 2024, 91: 106030. doi: 10.1016/j.bspc.2024.106030.
    [5] RAJWAL S and AGGARWAL S. Convolutional neural network-based EEG signal analysis: A systematic review[J]. Archives of Computational Methods in Engineering, 2023, 30(6): 3585–3615. doi: 10.1007/s11831-023-09920-1.
    [6] LI Kuan, AO Bin, WU Xin, et al. Parkinson’s disease detection and classification using EEG based on deep CNN-LSTM model[J]. Biotechnology and Genetic Engineering Reviews, 2024, 40(3): 2577–2596. doi: 10.1080/02648725.2023.2200333.
    [7] MAHMOUD A, AMIN K, AL RAHHAL M M, et al. A CNN approach for emotion recognition via EEG[J]. Symmetry, 2023, 15(10): 1822. doi: 10.3390/sym15101822.
    [8] PALANISAMY K K and RENGARAJ A. Detection of anxiety-based epileptic seizures in EEG signals using fuzzy features and parrot optimization-tuned LSTM[J]. Brain Sciences, 2024, 14(8): 848. doi: 10.3390/brainsci14080848.
    [9] PONOMAREVA N, HAZIMEH H, KURAKIN A, et al. How to DP-fy ML: A practical guide to machine learning with differential privacy[J]. Journal of Artificial Intelligence Research, 2023, 77: 1113–1201. doi: 10.1613/jair.1.14649.
    [10] NIU Zhaoyang, ZHONG Guoqiang, and YU Hui. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48–62. doi: 10.1016/j.neucom.2021.03.091.
    [11] CHEN Guijun, LIU Yue, and ZHANG Xueying. EEG–fNIRS-based emotion recognition using graph convolution and capsule attention network[J]. Brain Sciences, 2024, 14(8): 820. doi: 10.3390/brainsci14080820.
    [12] GAO Zhongke, LI Yanli, YANG Yuxuan, et al. A GPSO-optimized convolutional neural networks for EEG-based emotion recognition[J]. Neurocomputing, 2020, 380: 225–235. doi: 10.1016/j.neucom.2019.10.096.
    [13] LI Xiang, ZHANG Yazhou, TIWARI P, et al. EEG based emotion recognition: A tutorial and review[J]. ACM Computing Surveys, 2023, 55(4): 79. doi: 10.1145/3524499.
    [14] SUN Haitao, YANG Shuai, CHEN Lijuan, et al. Brain tumor image segmentation based on improved FPN[J]. BMC Medical Imaging, 2023, 23(1): 172. doi: 10.1186/s12880-023-01131-1.
    [15] YU Muyao, DONG Shengbo, DUAN Xiangyu, et al. A novel interference suppression method for interrupted sampling repeater jamming based on singular spectrum entropy function[J]. Sensors, 2019, 19(1): 136. doi: 10.3390/s19010136.
    [16] 周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914.

    ZHOU Tao, LIU Yuncan, LU Huiling, et al. ResNet and its application to medical image processing: Research progress and challenges[J]. Journal of Electronics & Information Technology, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914.
    [17] DONG Li, ZHAO Lingling, ZHANG Yufan, et al. Reference electrode standardization interpolation technique (RESIT): A novel interpolation method for scalp EEG[J]. Brain Topography, 2021, 34(4): 403–414. doi: 10.1007/s10548-021-00844-2.
    [18] KOU Yiwen, CHEN Zixiang, and GU Quanquan. Implicit bias of gradient descent for two-layer reLU and leaky reLU networks on nearly-orthogonal data[C]. The 37th Annual Conference on Neural Information Processing Systems, New Orleans, USA, 2024: 36.
    [19] GHOJOGH B and CROWLEY M. The theory behind overfitting, cross validation, regularization, bagging, and boosting: Tutorial[EB/OL]. https://arxiv.org/abs/1905.12787, 2019.
    [20] XIANG Chuqin, FAN Xinrui, BAI Duo, et al. A resting-state EEG dataset for sleep deprivation[J]. Scientific Data, 2024, 11(1): 427. doi: 10.1038/s41597-024-03268-2.
    [21] WANG Yulin, DUAN Wei, DONG Debo, et al. A test-retest resting, and cognitive state EEG dataset during multiple subject-driven states[J]. Scientific Data, 2022, 9(1): 566. doi: 10.1038/s41597-022-01607-9.
    [22] HU Fo, ZHANG Lekai, YANG Xusheng, et al. EEG-based driver fatigue detection using spatio-temporal fusion network with brain region partitioning strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9618–9630. doi: 10.1109/TITS.2023.3348517.
  • 加载中
图(6)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  86
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-23
  • 修回日期:  2025-07-02
  • 网络出版日期:  2025-07-25
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回