[1] |
VAZARD J. Feeling the unknown: Emotions of uncertainty and their valence[J]. Erkenntnis, 2024, 89(4): 1275–1294. doi: 10.1007/s10670-022-00583-1.
|
[2] |
LABRAGUE L J. Pandemic fatigue and clinical nurses’ mental health, sleep quality and job contentment during the COVID‐19 pandemic: The mediating role of resilience[J]. Journal of Nursing Management, 2021, 29(7): 1992–2001. doi: 10.1111/jonm.13383.
|
[3] |
ASTUTI R D, SUHARDI B, LAKSONO P W, et al. Investigating the relationship between noise exposure and human cognitive performance: attention, stress, and mental workload based on EEG signals using power spectrum density[J]. Applied Sciences, 2024, 14(7): 2699. doi: 10.3390/app14072699.
|
[4] |
ZHANG Bingtao, WANG Chonghui, YAN Guanghui, et al. Functional brain network based on improved ensemble empirical mode decomposition of EEG for anxiety analysis and detection[J]. Biomedical Signal Processing and Control, 2024, 91: 106030. doi: 10.1016/j.bspc.2024.106030.
|
[5] |
RAJWAL S and AGGARWAL S. Convolutional neural network-based EEG signal analysis: A systematic review[J]. Archives of Computational Methods in Engineering, 2023, 30(6): 3585–3615. doi: 10.1007/s11831-023-09920-1.
|
[6] |
LI Kuan, AO Bin, WU Xin, et al. Parkinson’s disease detection and classification using EEG based on deep CNN-LSTM model[J]. Biotechnology and Genetic Engineering Reviews, 2024, 40(3): 2577–2596. doi: 10.1080/02648725.2023.2200333.
|
[7] |
MAHMOUD A, AMIN K, AL RAHHAL M M, et al. A CNN approach for emotion recognition via EEG[J]. Symmetry, 2023, 15(10): 1822. doi: 10.3390/sym15101822.
|
[8] |
PALANISAMY K K and RENGARAJ A. Detection of anxiety-based epileptic seizures in EEG signals using fuzzy features and parrot optimization-tuned LSTM[J]. Brain Sciences, 2024, 14(8): 848. doi: 10.3390/brainsci14080848.
|
[9] |
PONOMAREVA N, HAZIMEH H, KURAKIN A, et al. How to DP-fy ML: A practical guide to machine learning with differential privacy[J]. Journal of Artificial Intelligence Research, 2023, 77: 1113–1201. doi: 10.1613/jair.1.14649.
|
[10] |
NIU Zhaoyang, ZHONG Guoqiang, and YU Hui. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48–62. doi: 10.1016/j.neucom.2021.03.091.
|
[11] |
CHEN Guijun, LIU Yue, and ZHANG Xueying. EEG–fNIRS-based emotion recognition using graph convolution and capsule attention network[J]. Brain Sciences, 2024, 14(8): 820. doi: 10.3390/brainsci14080820.
|
[12] |
GAO Zhongke, LI Yanli, YANG Yuxuan, et al. A GPSO-optimized convolutional neural networks for EEG-based emotion recognition[J]. Neurocomputing, 2020, 380: 225–235. doi: 10.1016/j.neucom.2019.10.096.
|
[13] |
LI Xiang, ZHANG Yazhou, TIWARI P, et al. EEG based emotion recognition: A tutorial and review[J]. ACM Computing Surveys, 2023, 55(4): 79. doi: 10.1145/3524499.
|
[14] |
SUN Haitao, YANG Shuai, CHEN Lijuan, et al. Brain tumor image segmentation based on improved FPN[J]. BMC Medical Imaging, 2023, 23(1): 172. doi: 10.1186/s12880-023-01131-1.
|
[15] |
YU Muyao, DONG Shengbo, DUAN Xiangyu, et al. A novel interference suppression method for interrupted sampling repeater jamming based on singular spectrum entropy function[J]. Sensors, 2019, 19(1): 136. doi: 10.3390/s19010136.
|
[16] |
周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914.ZHOU Tao, LIU Yuncan, LU Huiling, et al. ResNet and its application to medical image processing: Research progress and challenges[J]. Journal of Electronics & Information Technology, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914.
|
[17] |
DONG Li, ZHAO Lingling, ZHANG Yufan, et al. Reference electrode standardization interpolation technique (RESIT): A novel interpolation method for scalp EEG[J]. Brain Topography, 2021, 34(4): 403–414. doi: 10.1007/s10548-021-00844-2.
|
[18] |
KOU Yiwen, CHEN Zixiang, and GU Quanquan. Implicit bias of gradient descent for two-layer reLU and leaky reLU networks on nearly-orthogonal data[C]. The 37th Annual Conference on Neural Information Processing Systems, New Orleans, USA, 2024: 36.
|
[19] |
GHOJOGH B and CROWLEY M. The theory behind overfitting, cross validation, regularization, bagging, and boosting: Tutorial[EB/OL]. https://arxiv.org/abs/1905.12787, 2019.
|
[20] |
XIANG Chuqin, FAN Xinrui, BAI Duo, et al. A resting-state EEG dataset for sleep deprivation[J]. Scientific Data, 2024, 11(1): 427. doi: 10.1038/s41597-024-03268-2.
|
[21] |
WANG Yulin, DUAN Wei, DONG Debo, et al. A test-retest resting, and cognitive state EEG dataset during multiple subject-driven states[J]. Scientific Data, 2022, 9(1): 566. doi: 10.1038/s41597-022-01607-9.
|
[22] |
HU Fo, ZHANG Lekai, YANG Xusheng, et al. EEG-based driver fatigue detection using spatio-temporal fusion network with brain region partitioning strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9618–9630. doi: 10.1109/TITS.2023.3348517.
|