高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无监督自适应抽样与改进孪生网络结合的网络流量异常检测方法

尹梓诺 陈鸿昶 马海龙 胡涛 白禄鑫

尹梓诺, 陈鸿昶, 马海龙, 胡涛, 白禄鑫. 无监督自适应抽样与改进孪生网络结合的网络流量异常检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT241115
引用本文: 尹梓诺, 陈鸿昶, 马海龙, 胡涛, 白禄鑫. 无监督自适应抽样与改进孪生网络结合的网络流量异常检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT241115
YIN Zinuo, CHEN Hongchang, MA Hailong, HU Tao, BAI Luxin. A Network Traffic Anomaly Detection Method Integrating Unsupervised Adaptive Sampling with Enhanced Siamese Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241115
Citation: YIN Zinuo, CHEN Hongchang, MA Hailong, HU Tao, BAI Luxin. A Network Traffic Anomaly Detection Method Integrating Unsupervised Adaptive Sampling with Enhanced Siamese Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241115

无监督自适应抽样与改进孪生网络结合的网络流量异常检测方法

doi: 10.11999/JEIT241115 cstr: 32379.14.JEIT241115
基金项目: 雄安新区科技创新专项 (2022XAGG0111),国家自然科学基金(62176264)
详细信息
    作者简介:

    尹梓诺:女,博士生,研究方向为网络空间安全、网络流量异常检测等

    陈鸿昶:男,教授,研究方向为通信与信息系统、数据科学与人工智能等

    马海龙:男,教授,研究方向为网络空间内生安全技术、网络威胁智能检测以及新型网络体系等

    胡涛:男,助理研究员,研究方向为新型网络体系结构等

    白禄鑫:男,硕士生,研究方向为卫星互联网、软件定义网络和网络安全等

    通讯作者:

    胡涛 hutaondsc@163.com

  • 中图分类号: TN915.08; TP393

A Network Traffic Anomaly Detection Method Integrating Unsupervised Adaptive Sampling with Enhanced Siamese Network

Funds: Xiong’an New Area Science and Technology Innovation Special Project (2022XAGG0111), The National Natural Science Foundation of China (62176264)
  • 摘要: 针对基于传统机器学习的网络流量异常检测方法受流量数据类别不平衡的影响检测性能较差的问题,该文提出一种无监督自适应抽样与改进孪生网络结合的网络流量异常检测方法。首先,设计基于K-medoids的自适应小样本抽样算法(KAFS),利用无监督聚类对各类流量动态自适应地抽取更具代表性的少量样本,使正常和攻击流量均衡,提高训练小样本学习模型的数据质量。然后,构建具有鲁棒损失函数的孪生多层感知机(SMLP)模型用于流量异常检测,该模型利用两个相同结构的多层感知机对训练集中的成对流量样本进行训练,捕捉跨流量特征的非线性关系,学习流量数据的异同,进一步提高对攻击流量的分类精度。实验结果表明,所提方法在CICIDS2017和CICIDS2018数据集上的检测准确率分别可达99.80%和98.26%。与其他方法相比,该方法对未知攻击的检出率分别提高了至少2.85%和1.73%,有效提升流量异常检测性能。
  • 图  1  CICIDS2017数据集中正常流量和攻击流量的4种典型特征的核密度图

    图  2  CICIDS2018数据集中正常流量和攻击流量的4种典型特征的核密度图

    图  3  无监督自适应抽样与改进孪生网络结合的网络流量异常检测方法的结构

    图  4  KAFS算法

    图  5  SMLP模型

    图  6  SMLP模型在CICIDS2017和CICIDS2018数据集上的损失曲线

    图  7  CICIDS2017和CICIDS2018数据集中流统计特征对模型检测性能的贡献

    图  8  不同抽样方法的检测结果的比较

    图  9  不同孪生网络对CICIDS2017和CICIDS2018数据集的检测性能

    图  10  基于标准损失的MLP与融合编码和预测损失SMLP在CICIDS 2017和CICIDS2018数据集的检测性能对比

    图  11  不同检测方法对CICIDS2017数据集中未知攻击的检测性能

    图  12  不同检测方法对CICIDS2018数据集中未知攻击的检测性能

    表  1  CICIDS2017数据集训练数据分布

    类别正常流量攻击流量
    类型正常流量DDoSDoS GoldenEyePortScanBotFTP-PatatorSSH-Patator
    样本量43321725162420
    下载: 导出CSV

    表  2  CICIDS2018数据集训练数据分布

    类别正常流量攻击流量
    类型正常流量BotBrutefoceDoSInfiltration
    样本量2942122520
    下载: 导出CSV

    表  3  流量异常检测类别不平衡问题的先进方法的结构及检测结果对比(%)

    方法 抽样方法 K值设定 模型 损失 准确率 检出率 精确率 F1-score
    FC-Net 随机抽样 固定且相同 CNN and DNN 均方误差 95.67 95.28 94.32 94.80
    FS-IDS 随机抽样 固定且相同 AE+CNN 均方误差 97.71 96.56 97.88 97.22
    LIO-IDS 过采样 固定且相同 LSTM + I-OVO 分类交叉熵 97.56 99.24 95.08 97.11
    本文方法 KAFS 自适应 SMLP 二进制交叉熵 99.80 99.61 99.90 99.75
    下载: 导出CSV

    表  4  不同方法的多分类精确率和检出率对比(%)

    类型 方法
    FC-Net FS-IDS 所提方法
    精确率 检出率 精确率 检出率 精确率 检出率
    DDoS 98.45 97.62 98.36 97.97 99.58 99.87
    DoS GoldenEye 89.77 99.52 96.07 99.28 99.94 99.54
    PortScan 85.46 99.77 92.86 99.72 99.08 99.84
    Bot 98.32 98.73 97.98 96.78 99.14 99.91
    FTP-Patator 99.24 99.34 99.71 99.59 99.82 100.00
    SSH-Patator 99.49 100.00 99.61 99.92 99.99 99.77
    下载: 导出CSV

    表  5  所提方法与CICIDS2017上的先进方法检测性能的对比

    方法模型结构样本数准确率(%)精确率(%)检出率(%)F1-score(%)
    VFBLS多特征广义学习系统2194297.3996.9097.6097.25
    HNNCNN/LSTM+DNN22574599.8499.9899.1399.55
    DEIL-RVM动态集成相关向量机283069699.5699.4499.4199.42
    FCL-SBLS联邦持续学习和堆叠广义学习系统226455795.2894.1494.3094.22
    所提方法KAFS和SMLP17799.8099.9099.6199.75
    下载: 导出CSV

    表  6  现有先进方法与所提方法对CICIDS2017数据集在检测性能的统计显著性水平

    方法准确率精确率检出率F1-score
    VFBLS1.60e-118.20e-131.58e-106.61e-11
    HNN0.202.30e-027.65e-052.49e-02
    DEIL-RVM1.48e-045.48e-062.36e-025.04e-04
    FCL-SBLS5.98e-143.89e-151.26e-135.15e-14
    下载: 导出CSV

    表  7  所提方法与CICIDS2018上的先进方法检测结果对比

    方法样本量准确率(%)精确率(%)检出率(%)F1-score(%)
    DSSTE+miniVGGNeT15403497.2694.4695.1894.82
    ICVAE-BSM162859997.8396.3095.4295.86
    FL-IIDS7595598.2196.3596.2796.31
    所提方法14198.2696.9496.4496.68
    下载: 导出CSV

    表  8  与CICIDS2018上的先进方法多分类检测精确率和检出率对比(%)

    类型方法
    ICVAE-BSMDSSTE+ miniVGGNeTFL-IIDS所提方法
    精确率检出率精确率检出率精确率检出率精确率检出率
    Bot91.0494.5689.1195.3696.1499.6595.8299.70
    Bruteforce92.2994.3789.0895.2492.36100.0093.8699.61
    DoS92.5293.8191.9992.5997.1698.4097.5195.87
    Infiltration87.7293.7787.3893.0893.9182.0695.6595.39
    下载: 导出CSV

    表  9  现有先进方法与所提方法对CICIDS2018数据集在检测性能的统计显著性水平

    方法准确率精确率检出率F1-score
    ICVAE-BSM2.99e-055.15e-062.30e-064.91e-07
    DSSTE+ miniVGGNeT6.18e-081.02e-112.42e-103.34e-10
    FL-IIDS6.27e-031.33e-084.19e-065.82E-04
    下载: 导出CSV
  • [1] 潘成胜, 李志祥, 杨雯升, 等. 基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法[J]. 电子与信息学报, 2023, 45(12): 4539–4547. doi: 10.11999/JEIT221296.

    PAN Chengsheng, LI Zhixiang, YANG Wensheng, et al. Anomaly detection method of network traffic based on secondary feature extraction and BiLSTM-attention[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4539–4547. doi: 10.11999/JEIT221296.
    [2] GUPTA N, JINDAL V, and BEDI P. CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance in network-based intrusion detection systems[J]. Computers & Security, 2022, 112: 102499. doi: 10.1016/j.cose.2021.102499.
    [3] LEEVY J L and KHOSHGOFTAAR T M. A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data[J]. Journal of Big Data, 2020, 7(1): 104. doi: 10.1186/s40537-020-00382-x.
    [4] HE Xiaoqiang, CHEN Qianbin, TANG Lun, et al. Federated continuous learning based on stacked broad learning system assisted by digital twin networks: An incremental learning approach for intrusion detection in UAV networks[J]. IEEE Internet of Things Journal, 2023, 10(22): 19825–19838. doi: 10.1109/jiot.2023.3282648.
    [5] WU Zhijun, GAO Pan, CUI Lei, et al. An incremental learning method based on dynamic ensemble RVM for intrusion detection[J]. IEEE Transactions on Network and Service Management, 2022, 19(1): 671–685. doi: 10.1109/tnsm.2021.3102388.
    [6] LI Zhida, RIOS A L G, and TRAJKOVIĆ L. Machine learning for detecting anomalies and intrusions in communication networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 2254–2264. doi: 10.1109/jsac.2021.3078497.
    [7] LEI Shengwei, XIA Chunhe, LI Zhong, et al. HNN: A novel model to study the intrusion detection based on multi-feature correlation and temporal-spatial analysis[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 3257–3274. doi: 10.1109/tnse.2021.3109644.
    [8] JIN Zhigang, ZHOU Junyi, LI Bing, et al. FL-IIDS: A novel federated learning-based incremental intrusion detection system[J]. Future Generation Computer Systems, 2024, 151: 57–70. doi: 10.1016/j.future.2023.09.019.
    [9] RESENDE P A A and DRUMMOND A C. A survey of random forest-based methods for intrusion detection systems[J]. ACM Computing Surveys, 2019, 51(3): 48. doi: 10.1145/3178582.
    [10] SHAO Ling, WU Di, and LI Xuelong. Learning deep and wide: A spectral method for learning deep networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(12): 2303–2308. doi: 10.1109/TNNLS.2014.2308519.
    [11] 唐宏, 刘丹, 姚立霜, 等. 面向类不平衡网络流量的特征选择算法[J]. 电子与信息学报, 2021, 43(4): 923–930. doi: 10.11999/JEIT190992.

    TANG Hong, LIU Dan, YAO Lishuang, et al. Feature selection algorithm for class imbalanced internet traffic[J]. Journal of Electronics & Information Technology, 2021, 43(4): 923–930. doi: 10.11999/JEIT190992.
    [12] TELIKANI A, GANDOMI A H, CHOO K K R, et al. A cost-sensitive deep learning-based approach for network traffic classification[J]. IEEE Transactions on Network and Service Management, 2022, 19(1): 661–670. doi: 10.1109/tnsm.2021.3112283.
    [13] GUPTA N, JINDAL V, and BEDI P. LIO-IDS: Handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system[J]. Computer Networks, 2021, 192: 108076. doi: 10.1016/j.comnet.2021.108076.
    [14] LIU Lan, WANG Pengcheng, LIN Jun, et al. Intrusion detection of imbalanced network traffic based on machine learning and deep learning[J]. IEEE Access, 2021, 9: 7550–7563. doi: 10.1109/ACCESS.2020.3048198.
    [15] ZHANG Ying and LIU Qiang. On IoT intrusion detection based on data augmentation for enhancing learning on unbalanced samples[J]. Future Generation Computer Systems, 2022, 133: 213–227. doi: 10.1016/j.future.2022.03.007.
    [16] BALASUBRAMANIAM S, VIJESH JOE C, SIVAKUMAR T A, et al. Optimization enabled deep learning-based DDoS attack detection in cloud computing[J]. International Journal of Intelligent Systems, 2023, 2023: 2039217. doi: 10.1155/2023/2039217.
    [17] LAKE B M and BARONI M. Human-like systematic generalization through a meta-learning neural network[J]. Nature, 2023, 623(7985): 115–121. doi: 10.1038/s41586-023-06668-3.
    [18] KUMAR V and SINHA D. Synthetic attack data generation model applying generative adversarial network for intrusion detection[J]. Computers & Security, 2023, 125: 103054. doi: 10.1016/j.cose.2022.103054.
    [19] YAN Mi, HUI S C, and LI Ning. DML-PL: Deep metric learning based pseudo-labeling framework for class imbalanced semi-supervised learning[J]. Information Sciences, 2023, 626: 641–657. doi: 10.1016/j.ins.2023.01.074.
    [20] YAN Fei, LI Nianqiao, ILIYASU A M, et al. Insights into security and privacy issues in smart healthcare systems based on medical images[J]. Journal of Information Security and Applications, 2023, 78: 103621. doi: 10.1016/j.jisa.2023.103621.
    [21] XU Congyuan, SHEN Jizhong, and DU Xin. A method of few-shot network intrusion detection based on meta-learning framework[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3540–3552. doi: 10.1109/tifs.2020.2991876.
    [22] YANG Jingcheng, LI Hongwei, SHAO Shuo, et al. FS-IDS: A framework for intrusion detection based on few-shot learning[J]. Computers & Security, 2022, 122: 102899. doi: 10.1016/j.cose.2022.102899.
    [23] SHARAFALDIN I, LASHKARI A H, and GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]. The 4th International Conference on Information Systems Security and Privacy, Funchal, Portugal, 2018: 108–116. doi: 10.5220/0006639801080116.
  • 加载中
图(12) / 表(9)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  43
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 修回日期:  2025-05-14
  • 网络出版日期:  2025-06-03

目录

    /

    返回文章
    返回