高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非理想RIS辅助MIMO系统稀疏信道估计与阵列阻塞诊断

李双志 雷豪杰 郭新

李双志, 雷豪杰, 郭新. 非理想RIS辅助MIMO系统稀疏信道估计与阵列阻塞诊断[J]. 电子与信息学报, 2025, 47(8): 2573-2583. doi: 10.11999/JEIT241108
引用本文: 李双志, 雷豪杰, 郭新. 非理想RIS辅助MIMO系统稀疏信道估计与阵列阻塞诊断[J]. 电子与信息学报, 2025, 47(8): 2573-2583. doi: 10.11999/JEIT241108
LI Shuangzhi, LEI Haojie, GUO Xin. Sparse Channel Estimation and Array Blockage Diagnosis for Non-Ideal RIS-Assisted MIMO Systems[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2573-2583. doi: 10.11999/JEIT241108
Citation: LI Shuangzhi, LEI Haojie, GUO Xin. Sparse Channel Estimation and Array Blockage Diagnosis for Non-Ideal RIS-Assisted MIMO Systems[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2573-2583. doi: 10.11999/JEIT241108

非理想RIS辅助MIMO系统稀疏信道估计与阵列阻塞诊断

doi: 10.11999/JEIT241108 cstr: 32379.14.JEIT241108
基金项目: 国家自然科学基金(61901416),河南省青年人才托举工程基金(2024HYTP026),河南省自然科学基金(242300420269),河南省科技攻关资金资助项目(242102211017)
详细信息
    作者简介:

    李双志:男,副教授,研究方向为无线通信信号处理等

    雷豪杰:男,硕士生,研究方向为毫米波MIMO、智能反射面等

    郭新:女,副教授,研究方向为多媒体信号处理等

    通讯作者:

    郭新 iexguo@zzu.edu.cn

  • 中图分类号: TN92

Sparse Channel Estimation and Array Blockage Diagnosis for Non-Ideal RIS-Assisted MIMO Systems

Funds: The National Natural Science Foundation of China (61901416), The Young Elite Scientists Sponsorship Program of Henan (2024HYTP026), The Natural Science Foundation of Henan (242300420269), The Science and Technology Development Project of Henan Province (242102211017)
  • 摘要: 针对非理想可重构智能超表面(RIS)辅助毫米波多输入多输出(MIMO)系统信道状态信息获取问题,该文提出一种稀疏级联信道参数与阵列阻塞向量联合估计方案。首先,设计信道训练帧结构,将接收信号建模为张量模型。然后,基于张量的平行因子分解模型,分析毫米波信道参数与阻塞向量之间的内在关联,实现对收发端空域信道参数的有效估计。基于这些空间角频率,构建出同时反映剩余信道参数和阻塞信息的耦合观测矩阵。最后,通过利用多径信道和阻塞向量的双稀疏特性,完成剩余信道参数的估计和阻塞诊断。仿真结果表明,所提方案的信道估计和阻塞诊断性能表现优于对照方案。
  • 图  1  恶劣环境下运行的RIS辅助毫米波MIMO上行链路传输系统

    图  2  信道训练传输协议

    图  3  不同SNR下的信道估计与阻塞诊断的NMSE

    图  4  不同SNR和不同阻塞单元数量下的SE

    图  5  不同时间块下的信道估计与阻塞诊断的NMSE

    图  6  不同阻塞单元下的信道估计与阻塞诊断的NMSE

    图  7  不同UE端天线数量下的信道估计与阻塞诊断的NMSE

    图  8  不同$\kappa $下的信道估计与阻塞诊断的NMSE

    表  1  本文数学符号对照表

    数学符号 符号说明
    ${{\boldsymbol{A}}^*}$ 共轭
    ${{\boldsymbol{A}}^\dagger }$ 伪逆
    $\diamondsuit $ Khatri-Rao积
    $ \otimes $ Kronecker积
    ${[{\boldsymbol{a}}]_n}$ 向量${\boldsymbol{a}}$的第$n$个元素
    ${[\mathcal{A}]_{(n)}}$ 张量$\mathcal{A}$的模式$n$展开
    ${\text{diag(}} \cdot {\text{)}}$ 对角化
    ${\text{vec(}} \cdot {\text{)}}$ 向量化
    ${\text{unve}}{{\text{c}}_{M \times N}}( \cdot )$ 反向量化
    $\left| \cdot \right|$ 取模
    $ {\left\| \cdot \right\|_{\mathrm{F}}} $ Frobenius范数
    $ {\left\| \cdot \right\|_{\mathrm{p}}} $ ${\mathrm{p}}$-范数
    $\mathbb{E}\{ \cdot \} $ 均值
    下载: 导出CSV

    1  基于双稀疏的RIS辅助毫米波MIMO联合信道估计与阻塞诊断

     (1) 输入:接收信号${{\boldsymbol{y}}_{k,t}}$,预编码信号${{\boldsymbol{p}}_t}$,组合矩阵${\boldsymbol{W}}$,相移向量${{\boldsymbol{s}}_k}$,$t = 1,2, \cdots ,T$,$k = 1,2, \cdots ,K$
     (2) 根据导频传输协议,构造接收信号的张量模型$\mathcal{Y} \in {\mathbb{C}^{{N_{\text{B}}} \times T \times K}}$
     (3) 构造张量$\mathcal{Y}$的模式1和模式2展开形式${[\mathcal{Y}]_{(1)}}$和${[\mathcal{Y}]_{(2)}}$,见式(14)
     (4) 构造1维字典矩阵$ {{{\bar {\boldsymbol A}}}_{\text{B}}} \in {\mathbb{C}^{{M_{\text{B}}} \times {{\bar L}_{\text{B}}}}} $和$ {{{\bar {\boldsymbol A}}}_{\text{U}}} \in {\mathbb{C}^{{M_{\text{U}}} \times {{\bar L}_{\text{U}}}}} $
     (5) 根据式(15)和式(16),使用OMP算法估计${{\boldsymbol{\hat \theta }}_{\text{B}}}$和${{\boldsymbol{\hat \theta }}_{\text{U}}}$
     (6) 根据${{\boldsymbol{\hat \theta }}_{\text{B}}}$和${{\boldsymbol{\hat \theta }}_{\text{U}}}$构$ {{{\hat {\boldsymbol A}}}_{\text{B}}} = [{\boldsymbol{a}}({\hat \theta _{{\text{B,}}1}}),{\boldsymbol{a}}({\hat \theta _{{\text{B,}}2}}), \cdots ,{\boldsymbol{a}}({\hat \theta _{{\text{B,}}{L_{\text{B}}}}})] $和${{{\hat {\boldsymbol A}}}_{\text{U}}} = [{\boldsymbol{a}}({\hat \theta _{{\text{U,}}1}}),{\boldsymbol{a}}({\hat \theta _{{\text{U,}}2}}), \cdots ,{\boldsymbol{a}}({\hat \theta _{{\text{U,}}{L_{\text{U}}}}})]$
     (7) 构造张量$\mathcal{Y}$的模式3展开形式${[\mathcal{Y}]_{(3)}}$,见式(14)
     (8) 根据${[\mathcal{Y}]_{(3)}}$计算$ {{\bar {\boldsymbol B}}} = {[\mathcal{Y}]_{(3)}}{({({{\boldsymbol{P}}^{\text{T}}}{{\hat {\boldsymbol A}}}_{\text{U}}^*{{\boldsymbol{\varOmega }}_{\text{U}}}\diamondsuit {{\boldsymbol{W}}^{\text{T}}}{{{\hat {\boldsymbol A}}}_{\text{B}}}{{\boldsymbol{\varOmega }}_{\text{B}}})^{\text{T}}})^\dagger } $
     (9) 根据式(12)将剩余信道参数和阻塞向量的观测矩阵表示为$ \begin{array}{*{20}{c}} {{{\bar {\boldsymbol B}}} = {{\boldsymbol{S}}^{\text{T}}}({\boldsymbol{\bar H}} + {\boldsymbol{D}}) + {\boldsymbol{\bar N}}} \end{array} $
     (10) 初始化阻塞向量${{\boldsymbol{e}}^{(0)}} = {{{{\textit{1}}}}_N}$,即信道偏移矩阵${{\boldsymbol{D}}^{(0)}} = {{{{\textit{0}}}}_N}$
     (11) $i \leftarrow i + 1$
     (12) for $l = 1:L$
     (13)  根据式(25),使用截断SVD分解求解$ {\boldsymbol{\hat b}}_{{\text{v}},l}^{(i)} $和$ {\boldsymbol{\hat b}}_{h,l}^{(i)} $
     (14)  根据式(26)估计$ \hat {\boldsymbol{b}}_{{\text{v}},l}^{(i)} $和$ \hat {\boldsymbol{b}}_{{\text{h}},l}^{(i)} $,并重新构造$ {\boldsymbol{\hat b}}_{{\text{v}},l}^{(i)} $和$ {\boldsymbol{\hat b}}_{h,l}^{(i)} $
     (15)  根据式(27)计算$ \hat \alpha _l^{(i)} $,并更新$ {{\boldsymbol{\hat{ \bar {\boldsymbol{H}}}}}^{(i)}} = \hat \alpha _l^{(i)}({\boldsymbol{\hat b}}_{{\text{v}},l}^{(i)} \otimes {\boldsymbol{\hat b}}_{{\text{h}},l}^{(i)}) $
     (16) end
     (17) 根据式(28),确定$ {{\bar {\boldsymbol B}}}_2^{(i)} $中强度最大的列的索引${l_{{\text{LoS}}}}$,使用ADMM算法求解式(30)中的稀疏问题
     (18) 判断${\left\| {{{\boldsymbol{e}}^{(i)}} - {{\boldsymbol{e}}^{(i - 1)}}} \right\|_2} \le \tau $或者$i \le {I_1}$是否满足,不满足则返回步骤(11)
     (19) 输出:${{\boldsymbol{\hat \theta }}_{\text{U}}}$, ${{\boldsymbol{\hat \theta }}_{\text{B}}}$, ${{\boldsymbol{\hat b}}_{\text{v}}}$, ${{\boldsymbol{\hat b}}_{\text{h}}}$, ${\boldsymbol{\hat \alpha }}$和${\boldsymbol{\hat e}}$
    下载: 导出CSV
  • [1] 张建华, 王珩, 张宇翔, 等. 6G信道新特性与建模研究: 挑战、进展与展望[J]. 中国科学: 信息科学, 2024, 54(5): 1114–1143. doi: 10.1360/SSI-2023-0355.

    ZHANG Jianhua, WANG Heng, ZHANG Yuxiang, et al. Channel characteristics and modeling research for 6G: Challenges, progress, and prospects[J]. Scientia Sinica Informationis, 2024, 54(5): 1114–1143. doi: 10.1360/SSI-2023-0355.
    [2] WANG Chengxiang, YOU Xiaohu, GAO Xiqi, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. doi: 10.1109/comst.2023.3249835.
    [3] DAJER M, MA Zhengxiang, PIAZZI L, et al. Reconfigurable intelligent surface: Design the channel–A new opportunity for future wireless networks[J]. Digital Communications and Networks, 2022, 8(2): 87–104. doi: 10.1016/j.dcan.2021.11.002.
    [4] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609.
    [5] 郭甜, 张旭辉, 吴雨佳, 等. 可重构智能表面辅助的毫米波信道估计算法[J]. 电子与信息学报, 2023, 45(10): 3612–3621. doi: 10.11999/JEIT221232.

    GUO Tian, ZHANG Xuhui, WU Yujia, et al. Channel estimation algorithm for reconfigurable intelligent surface aided millimeter wave systems[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3612–3621. doi: 10.11999/JEIT221232.
    [6] 李双志, 杨睿棋, 郭新, 等. 低导频开销RIS辅助毫米波MIMO系统参数化信道估计方案[J]. 通信学报, 2024, 45(9): 82–91. doi: 10.11959/j.issn.1000-436x.2024157.

    LI Shuangzhi, YANG Ruiqi, GUO Xin, et al. Low pilot overhead parametric channel estimation scheme for RIS-assisted mmWave MIMO systems[J]. Journal on Communications, 2024, 45(9): 82–91. doi: 10.11959/j.issn.1000-436x.2024157.
    [7] ZHOU Shaoqing, XU Wei, WANG Kezhi, et al. Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1366–1369. doi: 10.1109/lwc.2020.2990431.
    [8] PAPAZAFEIROPOULOS A, PAN Cunhua, KOURTESSIS P, et al. Intelligent reflecting surface-assisted MU-MISO systems with imperfect hardware: Channel estimation and beamforming design[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2077–2092. doi: 10.1109/twc.2021.3109391.
    [9] CHEN Chunqi, WANG Manlin, XIA Bin, et al. Performance analysis and optimization of IRS-aided covert communication with hardware impairments[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5463–5467. doi: 10.1109/tvt.2022.3227342.
    [10] LI Liping, YING Run, LI Yingsong, et al. RIS array diagnosis for mmWave communication systems[J]. IEEE Signal Processing Letters, 2024, 31: 1980–1984. doi: 10.1109/lsp.2024.3427663.
    [11] MEDINA G, JIDA A S, PULIPALI S, et al. Millimeter-wave antenna array diagnosis with partial channel state information[C]. 2021-IEEE International Conference on Communications, Montreal, Canada, 2021: 1–5. doi: 10.1109/icc42927.2021.9500527.
    [12] SUN Rui, WANG Weidong, CHEN Li, et al. Diagnosis of intelligent reflecting surface in millimeter-wave communication systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 3921–3934. doi: 10.1109/twc.2021.3125734.
    [13] WU Tuo, PAN Cunhua, ZHI Kangda, et al. Exploit high-dimensional RIS information to localization: What is the impact of faulty element?[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(10): 2803–2819. doi: 10.1109/jsac.2024.3414582.
    [14] LI Binrui, ZHANG Zhongpei, HU Zhenzhen, et al. Joint array diagnosis and channel estimation for RIS-aided mmWave MIMO system[J]. IEEE Access, 2020, 8: 193992–194006. doi: 10.1109/access.2020.3032775.
    [15] LI Binrui, ZHANG Zhongpei, and HU Zhenzhen. Channel estimation for reconfigurable intelligent surface‐assisted multiuser mmWave MIMO system in the presence of array blockage[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(11): e4322. doi: 10.1002/ett.4322.
    [16] GOMES P R B, DE ARAÚJO G T, SOKAL B, et al. Channel estimation in RIS-assisted MIMO systems operating under imperfections[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 14200–14213. doi: 10.1109/tvt.2023.3279805.
    [17] MA Siqi, SHEN Wenqian, GAO Xinyu, et al. Robust channel estimation for RIS-aided millimeter-wave system with RIS blockage[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5621–5626. doi: 10.1109/tvt.2022.3153966.
    [18] PENG Zhendong, PAN Cunhua, ZHOU Gui, et al. Two-stage channel estimation for RIS-aided multiuser mmWave systems with reduced error propagation and pilot overhead[J]. IEEE Transactions on Signal Processing, 2023, 71: 3607–3622. doi: 10.1109/TSP.2023.3317729.
    [19] ZHENG Yu, WANG Qianli, REN Longfei, et al. RIS aided gridless 2D-DOA estimation via decoupled atomic norm minimization[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15733–15738. doi: 10.1109/TVT.2024.3401413.
    [20] LI Shuangzhi, LEI Haojie, DONG Zheng, et al. Two-stage channel estimation in mmWave MIMO systems with RIS blockage[J]. IEEE Wireless Communications Letters, 2024, 13(12): 3548–3552. doi: 10.1109/LWC.2024.3477504.
    [21] XIU Yue, WANG Wenyuan, and ZHANG Zhongpei. A message passing approach to acquire mm-Wave channel state information based on out-of-band data[J]. IEEE Access, 2018, 6: 45665–45680. doi: 10.1109/ACCESS.2018.2855688.
    [22] HE Jiguang, WYMEERSCH H, and JUNTTI M. Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5786–5797. doi: 10.1109/TWC.2021.3070064.
    [23] GHEREKHLOO S, ARDAH K, DE ALMEIDA A L F, et al. Tensor-based channel estimation and reflection design for RIS-aided millimeter-wave MIMO communication systems[C]. 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2021: 1683–1689. doi: 10.1109/IEEECONF53345.2021.9723362.
    [24] TANG Gongguo, BHASKAR B N, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451.
    [25] AKDENIZ M R, LIU Yuanpeng, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation[J]. IEEE Journal on Selected areas in Communications, 2014, 32(6): 1164–1179. doi: 10.1109/JSAC.2014.2328154.
    [26] ARDAH K, DE ALMEIDA A L F, and HAARDT M. A gridless CS approach for channel estimation in hybrid massive MIMO systems[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, 2019: 4160–4164. doi: 10.1109/ICASSP.2019.8683049.
    [27] ARDAH K, GHEREKHLOO S, DE ALMEIDA A L F, et al. TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems[J]. IEEE Signal Processing Letters, 2021, 28: 513–517. doi: 10.1109/LSP.2021.3059363.
    [28] ZHOU Zhou, FANG Jun, YANG Linxiao, et al. Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1524–1538. doi: 10.1109/JSAC.2017.2699338.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  105
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-08
  • 修回日期:  2025-06-29
  • 网络出版日期:  2025-07-08
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回