高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面辅助下基于交替优化的秩二波束赋形算法

周凯 喻兰 国强

周凯, 喻兰, 国强. 智能反射面辅助下基于交替优化的秩二波束赋形算法[J]. 电子与信息学报, 2025, 47(7): 2098-2107. doi: 10.11999/JEIT241107
引用本文: 周凯, 喻兰, 国强. 智能反射面辅助下基于交替优化的秩二波束赋形算法[J]. 电子与信息学报, 2025, 47(7): 2098-2107. doi: 10.11999/JEIT241107
ZHOU Kai, YU Lan, GUO Qiang. Rank-Two Beamforming Algorithm Based on Alternating Optimization Assisted by Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2098-2107. doi: 10.11999/JEIT241107
Citation: ZHOU Kai, YU Lan, GUO Qiang. Rank-Two Beamforming Algorithm Based on Alternating Optimization Assisted by Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2098-2107. doi: 10.11999/JEIT241107

智能反射面辅助下基于交替优化的秩二波束赋形算法

doi: 10.11999/JEIT241107 cstr: 32379.14.JEIT241107
基金项目: 国家重点研发计划(2023YFC2809400)
详细信息
    作者简介:

    周凯:男,副教授,研究方向为宽带数字通信、无线通信等

    喻兰:女,硕士生,研究方向为波束成形、智能反射面等

    国强:男,教授,研究方向为5G/6G无线通信关键技术等

    通讯作者:

    喻兰 yulan@hrbeu.edu.cn

  • 中图分类号: TN929.5

Rank-Two Beamforming Algorithm Based on Alternating Optimization Assisted by Intelligent Reflecting Surface

Funds: The National Key Research and Development Program (2023YFC2809400)
  • 摘要: 针对智能反射面(IRS)辅助的下行多用户多输入单输出(MISO)系统,该文以最大化系统频谱效率为目标,在满足基站发射功率和IRS反射单元模约束的条件下,设计基站处主动波束成形向量和IRS的相移矩阵。首先为了实现更高的波束形成自由度,采用了基于空间时间块编码(STBC)的秩二波束形成方案。随后为了求解非凸深度耦合的优化问题,提出了一种交替优化算法。针对IRS相移矩阵的求解,提出了一种改进的黎曼流形共轭梯度法(IRMG)进行优化,同时使用加权最小均方误差(WMMSE)设计主动波束形成向量。仿真结果验证了所提算法具有更快的收敛速度,同时能有效提升系统频谱效率。
  • 图  1  IRS辅助的下行多用户 MISO 系统

    图  2  IRS辅助的下行多用户MISO系统仿真场景

    图  3  不同算法下WSR与算法迭代次数的关系

    图  4  不同算法下WSR与IRS反射单元个数的关系

    图  5  不同算法下WSR与基站发射功率的关系

    图  6  不同算法下WSR与基站天线数量的关系

    图  7  不同算法下WSR与IRS相对基站横向距离的关系

    1  改进的黎曼共轭梯度搜索算法

     输入:基站主动波束形成向量${{\boldsymbol{B}}}$,随机初始化${{\boldsymbol{\theta}} _0}$,重启阈值$\tau $,
       求解精度${\varepsilon _1}$和最大迭代次数${I_{\mathrm{R}}}$;
     输出:IRS相移系数向量${{\boldsymbol{\theta}} }$;
     (1) 计算欧氏梯度${\nabla _{{{{\boldsymbol{\theta }}}_0}}}f$和黎曼梯度${\mathrm{gra}}{{\mathrm{d}}_{{{\boldsymbol{\theta}} _0}}}f$,根据式(12)确定初
       始搜索方向${{\boldsymbol{\eta}} _0}$,迭代计数;
     (2) 循环
     (3) 根据式(20)、式(21)选取搜索步长$ {\alpha _{t + 1}} $;
     (4) 根据式(15)的回缩操作在流形上确定${{{\boldsymbol{\theta}} }_{t + 1}}$:
       $ {{{\boldsymbol{\theta}} }_{t + 1}} = {\mathcal{R}_{{{{\boldsymbol{\theta}} }_t}}}({\alpha _t}{{{\boldsymbol{\eta}} }_t}) $;
     (5) 根据式(13)计算$ {\beta _{t + 1}} $;
     (6) 根据式(14)计算传输函数$ \mathcal{T}_{{{{\boldsymbol{\theta}} }_t} \to {{{\boldsymbol{\theta}} }_{t + 1}}}^S $;
     (7) 根据式(19)计算搜索方向变化量$ {\bar \mu _t} $;
     (8) 根据式(18)计算下次迭代的搜索方向$ {{{\boldsymbol{\eta}} }_{t + 1}} $;
     (9) 更新$t = t + 1$;
     (10) 直到满足${\left\| {{\mathrm{gra}}{{\mathrm{d}}_{{{{\boldsymbol{\theta}} }_t}}}f} \right\|_2} \le {\varepsilon _1}$或$t = {I_{\mathrm{R}}}$。
    下载: 导出CSV

    2  互补松弛变量的二分搜索算法

     输入:$ {\lambda _{\min }} = 0 $,$ {\lambda _{\max }} = \Re \left\{ {\displaystyle\sum\nolimits_{i = 1}^M {\displaystyle\sum\nolimits_{j = 1}^M {{{\boldsymbol{R}}}(i,j)} } } \right\} $,其中
       $ {{\boldsymbol{R}} = }\displaystyle\sum\nolimits_{k = 1}^K {{s}_k^2{\zeta_k}{{{\boldsymbol{h}}}_k}{{\boldsymbol{h}}}_k^{\text{H}}} \in {\mathbb{C}^{M \times M}} $;
     输出:互补松弛变量$ \lambda $;
     (1) 由$ {\lambda _{\max }} $得到${{\boldsymbol{B}}}$,计算发射功率${P_{\mathrm{B}}} = \displaystyle\sum\nolimits_{k = 1}^K {{{\left\| {{{{\boldsymbol{B}}}_k}} \right\|}^2}} $;
     (2) 若${P_{\mathrm{B}}} = {P_{\mathrm{t}}}$,输出$ {\lambda _{\max }} $,并退出算法;若${P_{\mathrm{B}}} > {P_{\mathrm{t}}}$,则赋
       值$ {\lambda _{\min }} = {\lambda _{\max }} $,$ {\lambda _{\max }} = 2{\lambda _{\max }} $,返回步骤(1);若${P_{\mathrm{B}}} < {P_{\mathrm{t}}}$
       执行下一步;
     (3) 计算$\rho = \sqrt {{P_{\mathrm{t}}}/{P_{\mathrm{B}}}} $,令${{\boldsymbol{B}}} = \rho {{\boldsymbol{B}}}$,并计算此时系统${\mathrm{WSR}}$;
     (4) 令$ \lambda = ({\lambda _{\max }} + {\lambda _{\min }})/2 $,并计算$ {{\boldsymbol{R}}' = {\boldsymbol{R}}} + \lambda {{{\boldsymbol{I}}}_M} $,其中
       $ {{{\boldsymbol{I}}}_M} $为单位矩阵;
     (5) 若$ {\mathrm{rank}}\left( {{{\boldsymbol{R}}'}} \right) < {{\boldsymbol{R}}} $,则令$ \lambda = ({\lambda _{\max }} + \lambda )/2 $,$ {\lambda _{\min }} = \lambda $;若
       $ {\mathrm{rank}}\left( {{{\boldsymbol{R}}'}} \right) \ge {{\boldsymbol{R}}} $,则退出循环;
     (6) 由当前$ \lambda $,得到${{\boldsymbol{B}}}$, ${P_{\mathrm{B}}}$和$\rho $,令${{\boldsymbol{B}}} = \rho {{\boldsymbol{B}}}$并计算当前
       ${\mathrm{WSR}}$;
     (7) 当满足条件:${P_{\mathrm{B}}} \le {P_{\mathrm{t}}}$,$ \lambda = {\lambda _{\max }} $或${P_{\mathrm{B}}} > {P_{\mathrm{t}}}$,
       $ \lambda = {\lambda _{\min }} $,则返回步骤(4),否则进行下一步;
     (8) 直到$ \lambda $, $ \left| {{\mathrm{WSR}}' - {\mathrm{WSR}}} \right| $和$ \left| {{P_{\mathrm{B}}} - {P_{\mathrm{t}}}} \right| $均小于阈值时,退出
       算法;
    下载: 导出CSV

    3  基于改进的黎曼共轭梯度搜索和WMMSE的交替优化算法

     输入:信道信息${{\boldsymbol{H}}}$,设置截至阈值${\varepsilon _2}$和交替优化次数${I_{\mathrm{A}}}$;
     输出:波束形成向量${{\boldsymbol{B}}}$、IRS相移系数向量${{\boldsymbol{\theta }}}$和${{\mathrm{WSR}}_1}$;
     (1) 初始化波束向量${{\boldsymbol{B}}}$和相移向量${{{\boldsymbol{\theta}} }_0}$,迭代计数$t = 0$;
     (2) 循环
     (3) 根据式(24)和式(25)分别计算$ {{{\boldsymbol{s}}}_k} $和$ {\zeta _k} $;
     (4) 由算法2确定互补松弛变量$ \lambda $;
     (5) 根据式(26)计算${{\boldsymbol{B}}}$;
     (6) 由当前${{\boldsymbol{B}}}$和${{\boldsymbol{\theta}} }$更新信道信息${{\boldsymbol{H}}}$,并计算此时${{\mathrm{WSR}}_0}$;
     (7) 根据算法1求解相移向量${{\boldsymbol{\theta}} }$,并根据${{\boldsymbol{\theta }}}$更新${{\boldsymbol{H}}}$;
     (8) 由当前${{\boldsymbol{H}}}$, ${{\boldsymbol{B}}}$和${{\boldsymbol{\theta}} }$计算此时${{\mathrm{WSR}}_1}$;
     (9) 更新$t = t + 1$;
     (10) 直到满足${\left\| {{\mathrm{gra}}{{\mathrm{d}}_{{{\boldsymbol{{\theta }}}_t}}}f} \right\|_2} \le {\varepsilon _2}$或 $ t = {I_{\mathrm{A}}} $;
    下载: 导出CSV

    表  1  仿真参数设置

    参数 参数值 参数 参数值
    用户数 4 基站发射功率 0 dBm
    基站天线个数 4 载波频率 4 GHz
    IRS反射单元个数 200 传输带宽 120 kHz
    IRS反射方位角$ v $ 45° 噪声功率谱密度 –170 dBm/Hz
    IRS反射俯仰角$ \varphi $ –45° 流形优化重启阈值 0.1
    视距链路路径损耗(dB) 35.6 + 22.0 lgd ${{\boldsymbol{B}}}$, ${\theta }$和WSR截止阈值 0.0001
    非视距链路路径损耗(dB) 32.6 + 36.7 lgd $ \lambda $截止阈值 0.001
    视距链路莱斯因子$ \varepsilon $ 10 算法迭代次数${I_{\mathrm{A}}}$和${I_{\mathrm{R}}}$ 100
    下载: 导出CSV
  • [1] PAN Cunhua, ZHOU Gui, ZHI Kangda, et al. An overview of signal processing techniques for RIS/IRS-aided wireless systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 883–917. doi: 10.1109/JSTSP.2022.3195671.
    [2] WANG Xuehui, SHU Feng, SHI Weiping, et al. Beamforming design for IRS-aided decode-and-forward relay wireless network[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 198–207. doi: 10.1109/TGCN.2022.3145031.
    [3] 中国信息通信研究院IMT-2030(6G)推进组. 6G前沿关键技术研究报告[R]. 2022.

    China Academy of Information and Communications Technology IMT-2030(6G). Report of 6G frontier key technology research[R]. 2022.
    [4] ZHENG Beixiong, YOU Changsheng, MEI Weidong, et al. A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1035–1071. doi: 10.1109/COMST.2022.3155305.
    [5] WANG Zhaorui, LIU Liang, ZHANG Shuowen, et al. Massive MIMO communication with intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2566–2582. doi: 10.1109/TWC.2022.3212537.
    [6] ZHENG Beixiong and ZHANG Rui. Simultaneous transmit diversity and passive beamforming with large-scale intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 920–933. doi: 10.1109/TWC.2022.3199426.
    [7] 王沛兰. 智能反射面辅助毫米波大规模MIMO系统信号处理技术研究[D]. [博士论文], 电子科技大学, 2023. doi: 10.27005/d.cnki.gdzku.2023.000095.

    WANG Peilan. Research on signal processing techniques for intelligent reflecting surface-assisted millimeter-wave massive MIMO systems[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.000095.
    [8] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design[C]. IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–6. doi: 10.1109/GLOCOM.2018.8647620.
    [9] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [10] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916.
    [11] NING Boyu, CHEN Zhi, CHEN Wenjie, et al. Beamforming optimization for intelligent reflecting surface assisted MIMO: A sum-path-gain maximization approach[J]. IEEE Wireless Communications Letters, 2020, 9(7): 1105–1109. doi: 10.1109/LWC.2020.2982140.
    [12] ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814.
    [13] XU Xiaorong, REN Hengxu, BAO Jianrong, et al. An enhanced interference alignment strategy with MIL criterion and RCG algorithm for IRS-assisted multiuser MIMO[J]. IEEE Communications Letters, 2023, 27(3): 1001–1005. doi: 10.1109/LCOMM.2023.3237540.
    [14] ZHAO Mingmin, WU Qingqing, ZHAO Minjian, et al. Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 2–17. doi: 10.1109/TWC.2020.3022297.
    [15] JUNG M, SAAD W, DEBBAH M, et al. On the optimality of reconfigurable intelligent surfaces (RISs): Passive beamforming, modulation, and resource allocation[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4347–4363. doi: 10.1109/TWC.2021.3058366.
    [16] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064–3076. doi: 10.1109/TWC.2020.2970061.
    [17] ZHU Fenghao, WANG Xinquan, HUANG Chongwen, et al. Robust beamforming for RIS-aided communications: Gradient-based manifold meta learning[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 15945–15956. doi: 10.1109/TWC.2024.3435023.
    [18] YE Junjie, HUANG Lei, CHEN Zhen, et al. Unsupervised learning for joint beamforming design in RIS-aided ISAC systems[J]. IEEE Wireless Communications Letters, 2024, 13(8): 2100–2104. doi: 10.1109/LWC.2024.3402235.
    [19] SIDIROPOULOS N D, DAVIDSON T N, and LUO Zhiquan. Transmit beamforming for physical-layer multicasting[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2239–2251. doi: 10.1109/TSP.2006.872578.
    [20] ZHOU Gui, PAN Cunhua, REN Hong, et al. Intelligent reflecting surface aided multigroup multicast MISO communication systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 3236–3251. doi: 10.1109/TSP.2020.2990098.
    [21] HAN Huimei, ZHAO Jun, NIYATO D, et al. Intelligent reflecting surface aided network: Power control for physical-layer broadcasting[C]. IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–7. doi: 10.1109/ICC40277.2020.9148827.
    [22] LI Ding, AN Qiaochu, SHI Yuanming, et al. Multigroup multicast transmission via intelligent reflecting surface[C]. 92nd IEEE Vehicular Technology Conference, Victoria, Canada, 2020: 1–6. doi: 10.1109/VTC2020-Fall49728.2020.9348503.
    [23] SHU Feng and WANG Jiangzhou. Secure multigroup multicast communication systems via intelligent reflecting surface[M]. SHU Feng and WANG Jiangzhou. Intelligent Reflecting Surface-Aided Physical-Layer Security. Cham: Springer, 2023: 171–190. doi: 10.1007/978-3-031-41812-9_8.
    [24] WANG Yajun, FANG Lili, CAI Shanjie, et al. Low-complexity algorithm for maximizing the weighted sum-rate of intelligent reflecting surface-assisted wireless networks[J]. IEEE Internet of Things Journal, 2024, 11(6): 10490–10499. doi: 10.1109/JIOT.2023.3326563.
    [25] WANG Kewei, QI Nan, GUAN Xin, et al. Transmit/passive beamforming design for multi-IRS assisted cell-free MIMO networks[J]. IEEE Systems Journal, 2023, 17(4): 6282–6291. doi: 10.1109/JSYST.2023.3307556.
    [26] SHI Mingli, LI Xiaohui, FAN Tao, et al. A low complexity algorithm for achievable rate maximization in mmWave systems aided by IRS[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2215–2219. doi: 10.1109/LWC.2022.3197418.
    [27] AHMADINEJAD A and TALEBI S. Beamforming design via machine learning in intelligent reflecting surface-aided wireless communication[J]. Physical Communication, 2025, 68: 102586. doi: 10.1016/j.phycom.2024.102586.
    [28] XU Sai, DU Yanan, LIU Jiajia, et al. Weighted sum rate maximization in IRS-BackCom enabled downlink multi-cell MISO network[J]. IEEE Communications Letters, 2022, 26(3): 642–646. doi: 10.1109/LCOMM.2021.3140207.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  245
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-16
  • 修回日期:  2025-04-07
  • 网络出版日期:  2025-04-24
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回