高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间栅格梯度的到达时差快速迭代定位方法研究

王杰 吴凌昊 卜祥玺 李航 梁兴东

王杰, 吴凌昊, 卜祥玺, 李航, 梁兴东. 基于空间栅格梯度的到达时差快速迭代定位方法研究[J]. 电子与信息学报, 2025, 47(7): 2108-2116. doi: 10.11999/JEIT241105
引用本文: 王杰, 吴凌昊, 卜祥玺, 李航, 梁兴东. 基于空间栅格梯度的到达时差快速迭代定位方法研究[J]. 电子与信息学报, 2025, 47(7): 2108-2116. doi: 10.11999/JEIT241105
WANG Jie, WU Linghao, BU Xiangxi, LI Hang, LIANG Xingdong. Research on Fast Iterative TDOA Localization Method Based on Spatial Grid Gradients[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2108-2116. doi: 10.11999/JEIT241105
Citation: WANG Jie, WU Linghao, BU Xiangxi, LI Hang, LIANG Xingdong. Research on Fast Iterative TDOA Localization Method Based on Spatial Grid Gradients[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2108-2116. doi: 10.11999/JEIT241105

基于空间栅格梯度的到达时差快速迭代定位方法研究

doi: 10.11999/JEIT241105 cstr: 32379.14.JEIT241105
基金项目: 国家自然科学基金(62171229)
详细信息
    作者简介:

    王杰:男,副研究员,研究方向为MIMO雷达信号设计、合成孔径雷达处理、雷达通信一体化

    吴凌昊:男,硕士生,研究方向为分布式无源定位

    卜祥玺:男,副研究员,研究方向为合成孔径雷达成像处理

    李航:男,博士生,研究方向为合成孔径雷达成像处理

    梁兴东:男,研究员,研究方向为高分辨率合成孔径雷达系统、干涉合成孔径雷达系统、成像处理及应用、雷达通信一体化

    通讯作者:

    卜祥玺 buxx@aircas.ac.cn

  • 中图分类号: TN958.97

Research on Fast Iterative TDOA Localization Method Based on Spatial Grid Gradients

Funds: The National Natural Science Foundation of China (62171229)
  • 摘要: 在无人机应用、空中旅游、应急救援等新兴业务驱动下,到达时差(TDOA)定位技术不断发展,逐渐成为低空智能网联的关键技术之一。但现有解析类迭代定位算法计算量过高,难以满足低延迟实时定位需求。因此,该文提出基于空间栅格梯度的TDOA快速迭代定位方法。在定位前,首先进行预处理,包括构建空间栅格、根据已建立的空间栅格计算栅格间的TDOA梯度,并基于这些梯度构建栅格迭代矩阵。在定位过程中,根据定位初值调用迭代矩阵,计算并补偿定位初值相对于目标位置的偏差,从而避免传统迭代定位的大量计算,显著降低计算时间。该文借鉴空间栅格化思路,进一步挖掘利用了栅格间的内在梯度关系,从而将栅格化框架融入到迭代补偿模型,克服了栅格宽度对经典栅格化算法的性能制约,提升了迭代定位时效性。依据仿真和实测数据可知,所提算法在保证定位精度的同时,相比传统迭代定位算法节省了76%以上的计算时间,满足低空智能网络的实时定位需求。
  • 图  1  算法流程图

    图  2  仿真场景示意图

    图  3  本文算法与经典栅格算法对比

    图  4  本文算法与泰勒迭代法对比

    图  5  定位初值误差对两种迭代算法的影响

    图  6  迭代门限对两种迭代算法的影响

    图  7  试验场景图

    图  8  接收站系统组成

    表  1  无人机辐射源信号参数

    参数 数值
    功率 30 dBm
    载波频率 3.4 GHz
    带宽 80 MHz
    下载: 导出CSV

    表  2  两种算法实测性能对比表

    指标 方法 第1组 第2组 第3组 第4组 第5组
    CEP(m) 泰勒迭代法 4.4 1.0 2.4 2.3 8.4
    本文算法 3.4 1.4 2.5 2.4 7.1
    计算时间(ms) 泰勒迭代法 11.8 12.4 12.0 11.8 12.1
    本文算法 2.6 2.7 2.6 2.7 2.7
    下载: 导出CSV
  • [1] LI Xujie, XU Yuan, TANG Jin, et al. A trusted multi-task distribution mechanism for Internet of vehicles based on smart contract[J]. China Communications, 2023, 20(4): 212–226. doi: 10.23919/JCC.fa.2022-0622.202304.
    [2] WANG Xue, WANG Shubo, GAO Xin, et al. AMTOS: An ADMM-based multilayer computation offloading and resource allocation optimization scheme in IoV-MEC system[J]. IEEE Internet of Things Journal, 2024, 11(19): 30953–30964. doi: 10.1109/JIOT.2024.3416171.
    [3] XU Shiwu, WEI Fen, and WU Yi. A novel fingerprint database regeneration method for accurate visible light positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2512613. doi: 10.1109/TIM.2024.3378255.
    [4] ZHAO Haitao, ZHAO Chunxi, ZHANG Tianyu, et al. Fishing net optimization: A learning scheme of optimizing multi-lateration stations in air-ground vehicle networks[J]. IEEE Signal Processing Letters, 2024, 31: 2965–2969. doi: 10.1109/LSP.2024.3479923.
    [5] FENG Simeng, ZHAO Yidi, KAI Liu, et al. Fine-grained particle swarm optimization for UAV trajectory design in FSO relay communication[C]. 2024 IEEE/CIC International Conference on Communications in China (ICCC), Hangzhou, China, 2024: 2029–2034. doi: 10.1109/ICCC62479.2024.10681835.
    [6] 邱佩雯, 钟奇, 俞越. 基于TDOA技术的无人机监测定位方法研究[J]. 中国无线电, 2024(3): 63–64,71.

    QIU Peiwen, ZHONG Qi, and YU Yue. Research on UAV monitoring and direction finding method based on TDOA[J]. China Radio, 2024(3): 63–64,71.
    [7] 罗智杰, 李首庆, 姚尧. 无人机典型定位算法研究[J]. 无线互联科技, 2023, 20(24): 141–144. doi: 10.3969/j.issn.1672-6944.2023.24.038.

    LUO Zhijie, LI Shouqing, and YAO Yao. Research on typical positioning algorithm of unmanned aerial vehicles[J]. Wireless Internet Science and Technology, 2023, 20(24): 141–144. doi: 10.3969/j.issn.1672-6944.2023.24.038.
    [8] 周明复, 叶方全, 卓智海. 无线电反制技术及其在无人机探测与反制领域的应用[J]. 警察技术, 2019(3): 21–23. doi: 10.3969/j.issn.1009-9875.2019.03.005.

    ZHOU Mingfu, YE Fangquan, and ZHUO Zhihai. Radio counter technology and its application in UAV detection and response[J]. Police Technology, 2019(3): 21–23. doi: 10.3969/j.issn.1009-9875.2019.03.005.
    [9] ZOU Yanbin and FAN Jingna. Source localization using TDOA measurements from underwater acoustic sensor networks[J]. IEEE Sensors Letters, 2023, 7(6): 6002604. doi: 10.1109/LSENS.2023.3274200.
    [10] 秦兆涛, 王俊, 魏少明, 等. 基于目标高度先验信息的多站时差无源定位方法[J]. 电子与信息学报, 2018, 40(9): 2219–2226. doi: 10.11999/JEIT171231.

    QIN Zhaotao, WANG Jun, WEI Shaoming, et al. Passive localization using TDOA measurements from multiple sensors based on priori knowledge of target altitude[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2219–2226. doi: 10.11999/JEIT171231.
    [11] LI Jinzhou, LV Shouye, JIN Ying, et al. Geolocation and tracking by TDOA measurements based on space–air–ground integrated network[J]. Remote Sensing, 2023, 15(1): 44. doi: 10.3390/rs15010044.
    [12] FOY W H. Position-location solutions by taylor-series estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, AES-12(2): 187–194. doi: 10.1109/TAES.1976.308294.
    [13] CHEN Jinming, LI Yu, YANG Xiaochao, et al. A two-stage aerial target localization method using time-difference-of-arrival measurements with the minimum number of radars[J]. Remote Sensing, 2023, 15(11): 2829. doi: 10.3390/rs15112829.
    [14] DOGANCAY K and HMAM H. 3D TDOA emitter localization using conic approximation[J]. Sensors, 2023, 23(14): 6254. doi: 10.3390/s23146254.
    [15] JIN Tian, LI Fangchi, QIN Honglei, et al. Differential time of arrival based opportunistic positioning for asynchronous cellular signals: Model, algorithms and experiments[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 12983–12999. doi: 10.1109/TVT.2023.3274210.
    [16] 李帅辰, 武建锋. 基于Chan-Taylor和优化BP神经网络的5G室内定位算法[J]. 中国惯性技术学报, 2023, 31(8): 806–813,822. doi: 10.13695/j.cnki.12-1222/o3.2023.08.009.

    LI Shuaichen and WU Jianfeng. 5G indoor location algorithm based on Chan-Taylor and optimized BP neural network[J]. Journal of Chinese Inertial Technology, 2023, 31(8): 806–813,822. doi: 10.13695/j.cnki.12-1222/o3.2023.08.009.
    [17] 张岳, 蒲红平, 陈伟. 基于多策略蜜獾算法的TDOA定位[J]. 无线互联科技, 2024, 21(5): 1–6,23. doi: 10.3969/j.issn.1672-6944.2024.05.002.

    ZHANG Yue, PU Hongping, and CHEN Wei. TDOA localization based on multi-strategy honey badger algorithm[J]. Wireless Internet Science and Technology, 2024, 21(5): 1–6,23. doi: 10.3969/j.issn.1672-6944.2024.05.002.
    [18] 叶智慧, 吴红梅, 王佩, 等. 基于量子海鸥算法的运载火箭回收舱段时差定位方法[J]. 上海航天(中英文), 2023, 40(6): 121–135. doi: 10.19328/j.cnki.2096-8655.2023.06.016.

    YE Zhihui, WU Hongmei, WANG Pei, et al. TDOA positioning method of launch vehicle recovery cabin based on quantum seagull optimization algorithm[J]. Aerospace Shanghai (Chinese & English), 2023, 40(6): 121–135. doi: 10.19328/j.cnki.2096-8655.2023.06.016.
    [19] 李谦. 基于TDOA的无源定位技术及其节点优选方法研究[D]. [博士论文], 西安电子科技大学, 2021. doi: 10.27389/d.cnki.gxadu.2021.000055.

    LI Qian. Research on passive location technology and node selection method based on TDOA[D]. [Ph. D. dissertation], Xidian University, 2021. doi: 10.27389/d.cnki.gxadu.2021.000055.
    [20] 辛升, 张卫杰. 主动空间栅格定位算法研究[J]. 战术导弹技术, 2016(3): 96–100. doi: 10.16358/j.issn.1009-1300.2016.03.18.

    XIN Sheng and ZHANG Weijie. Research on algorithm based on grid search for location[J]. Tactical Missile Technology, 2016(3): 96–100. doi: 10.16358/j.issn.1009-1300.2016.03.18.
    [21] XIN Jihao, GE Xuyang, ZHANG Yuan, et al. High-precision time difference of arrival estimation method based on phase measurement[J]. Remote Sensing, 2024, 16(7): 1197. doi: 10.3390/rs16071197.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  111
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-16
  • 修回日期:  2025-03-27
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回