高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合局部线性嵌入与深度强化学习的RIS-MISO下行和速率优化

孙俊 杨俊龙 杨青青 胡明志 吴紫仪

孙俊, 杨俊龙, 杨青青, 胡明志, 吴紫仪. 联合局部线性嵌入与深度强化学习的RIS-MISO下行和速率优化[J]. 电子与信息学报, 2025, 47(7): 2117-2126. doi: 10.11999/JEIT241083
引用本文: 孙俊, 杨俊龙, 杨青青, 胡明志, 吴紫仪. 联合局部线性嵌入与深度强化学习的RIS-MISO下行和速率优化[J]. 电子与信息学报, 2025, 47(7): 2117-2126. doi: 10.11999/JEIT241083
SUN Jun, YANG Junlong, YANG Qingqing, HU Mingzhi, WU Ziyi. Joint Local Linear Embedding and Deep Reinforcement Learning for RIS-MISO Downlink Sum-Rate Optimization[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2117-2126. doi: 10.11999/JEIT241083
Citation: SUN Jun, YANG Junlong, YANG Qingqing, HU Mingzhi, WU Ziyi. Joint Local Linear Embedding and Deep Reinforcement Learning for RIS-MISO Downlink Sum-Rate Optimization[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2117-2126. doi: 10.11999/JEIT241083

联合局部线性嵌入与深度强化学习的RIS-MISO下行和速率优化

doi: 10.11999/JEIT241083 cstr: 32379.14.JEIT241083
基金项目: 国家自然科学基金(62461030),云南省基础研究计划(202401AT070355)
详细信息
    作者简介:

    孙俊:男,讲师,研究方向为机器学习与RIS在下一代无线通信中的运用

    杨俊龙:男,硕士生,研究方向为深度强化学习与RIS辅助无线通信技术

    杨青青:女,讲师,研究方向为无人机与RIS在移动通信中的运用

    胡明志:男,硕士生,研究方向为深度学习的RIS辅助无线通信技术

    吴紫仪:女,硕士生,研究方向为RIS辅助的通感一体化系统

    通讯作者:

    孙俊 em.junsun@qq.com

  • 中图分类号: TN92

Joint Local Linear Embedding and Deep Reinforcement Learning for RIS-MISO Downlink Sum-Rate Optimization

Funds: The National Natural Science Foundation of China (62461030), Yunnan Fundamental Research Projects (202401AT070355)
  • 摘要: 智能反射面(RIS)因其能调节电磁波的相位和幅度,被视为下一代无线通信的关键技术而被广泛研究。在RIS辅助多输入单输出(MISO)的通信系统中,信道状态维度随用户数量的增加呈平方级增长,导致深度强化学习(DRL)智能体在高维状态空间下面临训练开销大的挑战。针对此问题,该文提出一种基于局部线性嵌入(LLE)和软动作评论(SAC)的联合优化算法,通过随机搜索算法和LLE对信道状态进行降维,并将低维状态作为SAC算法的输入,联合优化基站波束成形与RIS相位偏移,最大化MISO系统的下行和速率。仿真结果表明,在用户数为40的场景下,所提算法在维持与SAC相当的和速率性能的同时,训练时间减少了18.3%,计算资源消耗降低了64.8%。且随着用户规模的扩大,算法的训练开销进一步下降,充分验证了其有效性。
  • 图  1  RIS辅助MISO下行通信系统示意图

    图  2  俯仰角及方位角示意图

    图  3  LLE-SAC算法优化RIS辅助MISO下行通信系统示意图

    图  4  LLE对3维流形降维

    图  5  LLE-SAC结构图

    图  6  LLE不同参数下的重构偏差分布图

    图  7  LLE参数及降维效果

    图  8  LLE-SAC算法与SAC算法在不同用户下的训练开销对比

    图  9  不同发射功率与和速率的关系

    图  10  LLE-SAC不同用户数量下的收敛情况

    表  1  LLE-SAC实验相关参数

    参数 描述
    $M$ BS天线数量 25
    $N$ RIS反射元件数量 36
    ${L_{\rm G}}$ BS至RIS信道路径数 3
    ${L_{{\rm r},k}}$ RIS至UE信道路径数 3
    ${L_{{\rm d},k}}$ BS至UE信道路径数 10
    $\delta _0^2$ 高斯白噪声方差 0.01
    $U$ 训练步数 40000
    ${{\mathrm{lr}}_{\mathrm{A}}}$ Actor网络学习率 0.001
    ${{\mathrm{lr}}_{\mathrm{C}}}$ Critic网络学习率 0.01
    $\Gamma $ 经验池大小 100000
    $B$ 批处理数据大小 64
    $\alpha $ 初始化熵系数 0.01
    $\tau $ 目标网络软更新系数 0.001
    下载: 导出CSV
  • [1] BASAR E, ALEXANDROPOULOS G C, LIU Yuanwei, et al. Reconfigurable intelligent surfaces for 6G: Emerging hardware architectures, applications, and open challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(3): 27–47. doi: 10.1109/MVT.2024.3415570.
    [2] BILOTTI F, BARBUTO M, HAMZAVI-ZARGHANI Z, et al. Reconfigurable intelligent surfaces as the key-enabling technology for smart electromagnetic environments[J]. Advances in Physics: X, 2024, 9(1): 2299543. doi: 10.1080/23746149.2023.2299543.
    [3] FENG Yijun, HU Qi, QU Kai, et al. Reconfigurable intelligent surfaces: Design, implementation, and practical demonstration[J]. Electromagnetic Science, 2023, 1(2): 0020111. doi: 10.23919/emsci.2022.0011.
    [4] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013288.
    [5] 田心记, 孟浩然, 李兴旺, 等. 双STAR-RIS辅助下行NOMA系统中最大化和速率的方法[J]. 电子与信息学报, 2024, 46(9): 3537–3543. doi: 10.11999/JEIT240007.

    TIAN Xinji, MENG Haoran, LI Xingwang, et al. Method of maximizing sum rate for dual STAR-RIS assisted downlink NOMA systems[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3537–3543. doi: 10.11999/JEIT240007.
    [6] ZHU Guangxu, LYU Zhonghao, JIAO Xiang, et al. Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G[J]. Science China Information Sciences, 2023, 66(3): 130301. doi: 10.1007/s11432-022-3652-2.
    [7] LEE H, LEE B, YANG H, et al. Towards 6G hyper-connectivity: Vision, challenges, and key enabling technologies[J]. Journal of Communications and Networks, 2023, 25(3): 344–354. doi: 10.23919/JCN.2023.000006.
    [8] ZHONG Ruikang, LIU Yuanwei, MU Xidong, et al. AI empowered RIS-assisted NOMA networks: Deep learning or reinforcement learning?[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 182–196. doi: 10.1109/JSAC.2021.3126068.
    [9] HUANG Hongji, SONG Yiwei, YANG Jie, et al. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3027–3032. doi: 10.1109/TVT.2019.2893928.
    [10] HUANG Hao, XIA Wenchao, XIONG Jian, et al. Unsupervised learning-based fast beamforming design for downlink MIMO[J]. IEEE Access, 2019, 7: 7599–7605. doi: 10.1109/ACCESS.2018.2887308.
    [11] 陈真, 杜晓宇, 唐杰, 等. 基于深度强化学习的RIS辅助通感融合网络: 挑战与机遇[J]. 电子与信息学报, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.

    CHEN Zhen, DU Xiaoyu, TANG Jie, et al. DRL-based RIS-assisted ISAC network: Challenges and opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.
    [12] CHEN Peng, LI Xiao, MATTHAIOU M, et al. DRL-based RIS phase shift design for OFDM communication systems[J]. IEEE Wireless Communications Letters, 2023, 12(4): 733–737. doi: 10.1109/LWC.2023.3242449.
    [13] HUANG Chongwen, MO Ronghong, and YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1839–1850. doi: 10.1109/JSAC.2020.3000835.
    [14] ZHANG Ruichen, XIONG Ke, LU Yang, et al. Energy efficiency maximization in RIS-assisted SWIPT networks with RSMA: A PPO-based approach[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1413–1430. doi: 10.1109/JSAC.2023.3240707.
    [15] HUANG Chongwen, YANG Zhaohui, ALEXANDROPOULOS G C, et al. Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1663–1677. doi: 10.1109/JSAC.2021.3071836.
    [16] SAGLAM B, GURGUNOGLU D, and KOZAT S S. Deep reinforcement learning based joint downlink beamforming and RIS configuration in RIS-aided MU-MISO systems under hardware impairments and imperfect CSI[C]. 2023 IEEE International Conference on Communications Workshops, Rome, Italy, 2023: 66–72. doi: 10.1109/ICCWorkshops57953.2023.10283517.
    [17] IZENMAN A J. Introduction to manifold learning[J]. WIREs: Computational Statistics, 2012, 4(5): 439–446. doi: 10.1002/wics.1222.
    [18] ZHOU Xiaoping, WANG Peipei, YANG Zhe, et al. A manifold learning two-tier beamforming scheme optimizes resource management in massive MIMO networks[J]. IEEE Access, 2020, 8: 22976–22987. doi: 10.1109/ACCESS.2020.2964615.
    [19] ZHU Guangxu, LIU Dongzhu, DU Yuqing, et al. Toward an intelligent edge: Wireless communication meets machine learning[J]. IEEE Communications Magazine, 2020, 58(1): 19–25. doi: 10.1109/MCOM.001.1900103.
    [20] ZHU Fenghao, WANG Xinquan, HUANG Chongwen, et al. Robust beamforming for RIS-aided communications: Gradient-based manifold meta learning[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 15945–15956. doi: 10.1109/TWC.2024.3435023.
    [21] DE SOUZA JUNIOR W, GUERRA D W M, MARINELLO FILHO J C, et al. Manifold-based optimizations for RIS-aided massive MIMO systems[J]. IEEE Open Journal of the Communications Society, 2024, 5: 7913–7940. doi: 10.1109/OJCOMS.2024.3512662.
    [22] DAI Linglong and WEI Xiuhong. Distributed machine learning based downlink channel estimation for RIS assisted wireless communications[J]. IEEE Transactions on Communications, 2022, 70(7): 4900–4909. doi: 10.1109/TCOMM.2022.3175175.
    [23] HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[EB/OL]. https://arxiv.org/abs/1812.05905, 2018.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  86
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 修回日期:  2025-05-29
  • 网络出版日期:  2025-06-13
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回