高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SealVerifier:基于双流模型的印章自动核验系统

雷萌 宁琪玥 鞠进军 邹亮

雷萌, 宁琪玥, 鞠进军, 邹亮. SealVerifier:基于双流模型的印章自动核验系统[J]. 电子与信息学报, 2025, 47(7): 2308-2319. doi: 10.11999/JEIT241059
引用本文: 雷萌, 宁琪玥, 鞠进军, 邹亮. SealVerifier:基于双流模型的印章自动核验系统[J]. 电子与信息学报, 2025, 47(7): 2308-2319. doi: 10.11999/JEIT241059
LEI Meng, NING Qiyue, JU Jinjun, ZOU Liang. SealVerifier: Seal Verification System Based on Dual-stream Model[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2308-2319. doi: 10.11999/JEIT241059
Citation: LEI Meng, NING Qiyue, JU Jinjun, ZOU Liang. SealVerifier: Seal Verification System Based on Dual-stream Model[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2308-2319. doi: 10.11999/JEIT241059

SealVerifier:基于双流模型的印章自动核验系统

doi: 10.11999/JEIT241059 cstr: 32379.14.JEIT241059
基金项目: 国家自然科学基金(62373360, 62473368),科技创新2030——新一代人工智能重大项目(2020AAA0107300)
详细信息
    作者简介:

    雷萌:女,副教授,研究方向为机器学习与数据挖掘

    宁琪玥:女,硕士生,研究方向为图像处理与模式识别

    鞠进军:男,副教授,研究方向为信号处理

    邹亮:男,副教授,博士生导师,研究方向为统计信号处理和人工智能

    通讯作者:

    邹亮 liangzou@cumt.edu.cn

  • 中图分类号: TN919.81; TP391.41

SealVerifier: Seal Verification System Based on Dual-stream Model

Funds: The National Natural Science Foundation of China (62373360, 62473368), The Scientific Innovation 2030 Major Project for New Generation of AI (2020AAA0107300)
  • 摘要: 印章在文书认证、合同签署等场景中具有重要的法律效力,是确保文件真实性和合法性的重要标志。然而,随着数字技术的快速发展,印章伪造手段日益精进,对现有的印章核验技术提出了新的挑战,尤其是在图像质量不佳或存在模糊的情况下,核验难度显著增加。为应对此问题,该文提出一种基于双流模型的印章自动核验系统SealVerifier。该系统结合了EfficientNet与高效视觉Transformer(SViT),SViT在Transformer编码器中引入高维多层感知器和去归一化机制,以增强特征表示能力和泛化能力。此外,该文引入数据分布适配器以应对实际场景中多样化的印章,并采用双重损失函数提升模型的精度和泛化能力。在包含30 699对图像的自建中文印章数据集上,SealVerifier的精确率、召回率和F1值分别达到了91.34%, 96.83%和93.57%,显著优于现有的印章核验技术。
  • 图  1  印章真伪核验流程

    图  2  DeARegNet网络架构

    图  3  双流模型网络架构

    图  4  SViT网络架构

    图  5  9对印章的数据分布可视化(t-SNE降维)

    图  6  CHSAD印章图像数据集实例

    图  7  基于DeARegNet和HSV模型的图像增强结果

    图  8  不同模型的ROC曲线

    1  计算矫正角度

     输入:图像I
     输出:旋转角度θ
     (1)根据图像I获取自适应的二值化阈值T
     (2)根据阈值T得到二值化图像
     (3)根据图像外接圆得到图像中心点O
     (4)根据连通区域面积得到中心图案
     (5)中心图案边缘检测算法得到两个对齐控制点AB
     (6)计算A,B两点与中心点O的角度,θ1θ2
     (7)θ=θ1θ2
     (8)return θ
    下载: 导出CSV

    表  1  中文印章真实性数据集

    印章数据图像数量正样本对负样本对
    印章163967986
    印章2942 1622 209
    印章3952 2092 256
    印章4962 2562 304
    印章5801 5611 599
    印章6801 5641 596
    印章7952 2092 256
    印章8711 2251 260
    印章9651 0261 054
    下载: 导出CSV

    表  2  基于SealVerifier的图像增强对比实验结果(%)

    图像增强 精确率 召回率 F1值
    51.34 99.53 67.25
    HSV 77.44 98.51 86.12
    DeARegNet 91.34 96.83 93.57
    下载: 导出CSV

    表  3  基于不同分类模型的印章真伪核验性能

    模型 精确率(%) 召回率(%) F1值(%) FLOPS (G) fps
    Swin Transformer[31] 74.86 72.09 73.45 4.71 2.07
    ViT-Base-P16-400[30] 83.04 60.67 65.78 2.10 1.53
    RepViT_m0_6[27] 63.54 89.07 71.22 1.29 7.57
    Res2Net50[29] 82.31 75.05 76.41 13.90 10.25
    RMT_T3[28] 70.33 95.20 79.85 7.67 13.04
    EfficientNetB0[24] 76.26 95.74 83.62 0.09 7.88
    SealVerifier 91.34 96.83 93.57 0.48 9.44
    下载: 导出CSV

    表  4  模型结构消融实验结果

    ViT SViT DDA 精确率(%) 召回率(%) F1值(%) FLOPS (G) fps
    × × × 76.26 95.74 83.62 0.09 7.88
    × × 84.63 95.89 90.70 0.23 9.29
    × × 87.23 96.25 91.51 0.47 11.10
    × 90.89 96.41 92.67 0.24 9.76
    × 91.34 96.83 93.57 0.48 9.44
    下载: 导出CSV
  • [1] ENGIN D, KANTARCI A, ARSLAN S, et al. Offline signature verification on real-world documents[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 808–809. doi: 10.1109/CVPRW50498.2020.00412.
    [2] SU Yuchen, UENG Y, and CHUNG W H. SVM-based seal imprint verification using edge difference[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 1567–1571. doi: 10.1109/ICASSP.2019.8682810.
    [3] TAN Weijun, GUO Hongwei, and YAO Qi. Seal imprint verification using SVM classifier and unmatched key point features[C]. 2021 IEEE 6th International Conference on Signal and Image Processing, Nanjing, China, 2021: 148–153. doi: 10.1109/ICSIP52628.2021.9688941.
    [4] YOU Yang, LOU Yujing, SHI Ruoxi, et al. PRIN/SPRIN: On extracting point-wise rotation invariant features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9489–9502. doi: 10.1109/TPAMI.2021.3130590.
    [5] LI Meng and MA Li. Learning asymmetric and local features in multi-dimensional data through wavelets with recursive partitioning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7674–7687. doi: 10.1109/TPAMI.2021.3110403.
    [6] CHEN Zewei, GU An, ZHANG Xin, et al. Authentication and inference of seal stamps on Chinese traditional painting by using multivariate classification and near-infrared spectroscopy[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 226–233. doi: 10.1016/j.chemolab.2017.10.017.
    [7] LI Yuqiang, WANG Xinjie, YU Huijing, et al. Pattern-coupled baseline correction method for near-infrared spectroscopy multivariate modeling[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1003609. doi: 10.1109/TIM.2023.3265101.
    [8] 余彪, 万水龙, 刘进, 等. 基于Krawtchouk-RBF的印章图像分类识别[J]. 微型机与应用, 2014, 33(6): 44–47. doi: 10.19358/j.issn.1674-7720.2014.06.015.

    YU Biao, WAN Shuilong, LIU Jin, et al. Classification and recognition of seal image based on Krawtchouk-RBF[J]. Microcomputer & its Applications, 2014, 33(6): 44–47. doi: 10.19358/j.issn.1674-7720.2014.06.015.
    [9] HUŠEK P. On monotonic radial basis function networks[J]. IEEE Transactions on Cybernetics, 2024, 54(2): 717–727. doi: 10.1109/TCYB.2022.3185827.
    [10] PRIYA R K S, MURUGESWARI K, BIJU J, et al. Machine learning algorithms for detecting fake reviews–A study[C]. 2023 IEEE International Conference on ICT in Business Industry & Government, Indore, India, 2023: 1–5. doi: 10.1109/ICTBIG59752.2023.10456019.
    [11] LEE J, KONG S G, LEE Y S, et al. Forged seal detection based on the seal overlay metric[J]. Forensic Science International, 2012, 214(1/3): 200–206. doi: 10.1016/j.forsciint.2011.08.009.
    [12] CHUNG W H, WU Muen, UENG Y L, et al. Forged seal imprint identification based on regression analysis on imprint borders and metrics comparisons[C]. 2018 IEEE Conference on Dependable and Secure Computing, Kaohsiung, China, 2018: 1–5. doi: 10.1109/DESEC.2018.8625152.
    [13] LI Yunxiang, SHAO H C, LIANG Xiao, et al. Zero-shot medical image translation via frequency-guided diffusion models[J]. IEEE Transactions on Medical Imaging, 2024, 43(3): 980–993. doi: 10.1109/TMI.2023.3325703.
    [14] SU Yuchen, UENG Y L, and CHUNG W H. Automatic seal imprint verification systems using edge difference[J]. IEEE Access, 2019, 7: 145302–145312. doi: 10.1109/ACCESS.2019.2945045.
    [15] 丁世飞, 孙玉婷, 梁志贞, 等. 弱监督场景下的支持向量机算法综述[J]. 计算机学报, 2024, 47(5): 987–1009. doi: 10.11897/SP.J.1016.2024.00987.

    DING Shifei, SUN Yuting, LIANG Zhizhen, et al. Survey on Support Vector Machine algorithms in weakly supervised scenarios[J]. Chinese Journal of Computers, 2024, 47(5): 987–1009. doi: 10.11897/SP.J.1016.2024.00987.
    [16] YAN Leiming, CHEN Kai, TONG Shikun, et al. Identifying forged seal imprints using positive and unlabeled learning[J]. Multimedia Tools and Applications, 2021, 80(20): 30761–30773. doi: 10.1007/s11042-020-10171-6.
    [17] ZHANG Shichao and LI Jiaye. KNN classification with one-step computation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(3): 2711–2723. doi: 10.1109/TKDE.2021.3119140.
    [18] YUE Guanghui, ZHANG Shaoping, ZHOU Tianwei, et al. Pyramid network with quality-aware contrastive loss for retinal image quality assessment[J]. IEEE Transactions on Medical Imaging, 2025, 44(3): 1416–1431. doi: 10.1109/TMI.2024.3501405.
    [19] WANG Zhenyu, LIAN Jie, SONG Chunfeng, et al. CSRS: A Chinese seal recognition system with multi-task learning and automatic background generation[J]. IEEE Access, 2019, 7: 96628–96638. doi: 10.1109/ACCESS.2019.2927396.
    [20] 林超群, 王大寒, 肖顺鑫, 等. 基于孪生网络与多重通道融合的脱机笔迹鉴别[J]. 自动化学报, 2024, 50(8): 1660–1670. doi: 10.16383/j.aas.c230777.

    LIN Chaoqun, WANG Dahan, XIAO Shunxin, et al. Offline handwriting verification based on Siamese network and multi-channel fusion[J]. Acta Automatica Sinica, 2024, 50(8): 1660–1670. doi: 10.16383/j.aas.c230777.
    [21] SIRAJUDEEN M and ANITHA R. Forgery document detection in information management system using cognitive techniques[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(6): 8057–8068. doi: 10.3233/JIFS-189128.
    [22] LI Chi’an, CHEN T Y, CHOU H S, et al. An improved image feature detection algorithm based on oriented FAST and rotated BRIEF for nighttime images[C]. 2022 IEEE International Conference on Consumer Electronics, Taipei, China, 2022: 289–290. doi: 10.1109/ICCE-Taiwan55306.2022.9869224.
    [23] 蔡旖旎, 陈正鸣, 倪佳佳. 一种可供识别和溯源的印章图像核验系统[J]. 计算机与现代化, 2022(5): 102–107. doi: 10.3969/j.issn.1006-2475.2022.05.016.

    CAI Yini, CHEN Zhengming, and NI Jiajia. A seal image verification system for identification and traceability[J]. Computer and Modernization, 2022(5): 102–107. doi: 10.3969/j.issn.1006-2475.2022.05.016.
    [24] TAN Mingxing and LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6105–6114.
    [25] 赵凤, 耿苗苗, 刘汉强, 等. 卷积神经网络与视觉Transformer联合驱动的跨层多尺度融合网络高光谱图像分类方法[J]. 电子与信息学报, 2024, 46(5): 2237–2248. doi: 10.11999/JEIT231209.

    ZHAO Feng, GENG Miaomiao, LIU Hanqiang, et al. Convolutional neural network and vision transformer-driven cross-layer multi-scale fusion network for hyperspectral image classification[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2237–2248. doi: 10.11999/JEIT231209.
    [26] YUE Guanghui, ZHANG Lixin, DU Jingfeng, et al. Subjective and objective quality assessment of colonoscopy videos[J]. IEEE Transactions on Medical Imaging, 2025, 44(2): 841–854. doi: 10.1109/TMI.2024.3461737.
    [27] WANG Ao, CHEN Hui, LIN Zijia, et al. Rep ViT: Revisiting mobile CNN from ViT perspective[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 15909–15920. doi: 10.1109/CVPR52733.2024.01506.
    [28] FAN Qihang, HUANG Huaibo, CHEN Mingrui, et al. RMT: Retentive networks meet vision transformers[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 5641–5651. doi: 10.1109/CVPR52733.2024.00539.
    [29] GAO Shanghua, CHENG Mingming, ZHAO Kai, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652–662. doi: 10.1109/TPAMI.2019.2938758.
    [30] HAN Kai, WANG Yunhe, CHEN Hanting, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87–110. doi: 10.1109/TPAMI.2022.3152247.
    [31] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10012–10022. doi: 10.1109/ICCV48922.2021.00986.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  246
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 修回日期:  2025-04-18
  • 网络出版日期:  2025-05-08
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回