高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超球体密度聚类的自适应不均衡数据过采样算法

陶新民 李俊轩 郭心悦 史丽航 徐安南 张艳萍

陶新民, 李俊轩, 郭心悦, 史丽航, 徐安南, 张艳萍. 基于超球体密度聚类的自适应不均衡数据过采样算法[J]. 电子与信息学报, 2025, 47(7): 2347-2360. doi: 10.11999/JEIT241037
引用本文: 陶新民, 李俊轩, 郭心悦, 史丽航, 徐安南, 张艳萍. 基于超球体密度聚类的自适应不均衡数据过采样算法[J]. 电子与信息学报, 2025, 47(7): 2347-2360. doi: 10.11999/JEIT241037
TAO Xinmin, LI Junxuan, GUO Xinyue, SHI Lihang, XU Annan, ZHANG Yanping. Density Clustering Hypersphere-based Self-adaptively Oversampling Algorithm for Imbalanced Datasets[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2347-2360. doi: 10.11999/JEIT241037
Citation: TAO Xinmin, LI Junxuan, GUO Xinyue, SHI Lihang, XU Annan, ZHANG Yanping. Density Clustering Hypersphere-based Self-adaptively Oversampling Algorithm for Imbalanced Datasets[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2347-2360. doi: 10.11999/JEIT241037

基于超球体密度聚类的自适应不均衡数据过采样算法

doi: 10.11999/JEIT241037 cstr: 32379.14.JEIT241037
基金项目: 国家自然科学基金(62176050),山东省自然科学基金(ZR2024QA140)
详细信息
    作者简介:

    陶新民:男,教授,研究方向为小样本分类、数据挖掘

    李俊轩:男,硕士生,研究方向为小样本分类

    郭心悦:女,硕士生,研究方向为数据挖掘

    史丽航:女,硕士生,研究方向为数据挖掘

    徐安南:男,硕士生,研究方向为不均衡数据挖掘

    张艳萍:女,副教授,研究方向为数据挖掘

    通讯作者:

    陶新民 taoxinmin@nefu.edu.cn

  • 中图分类号: TN911

Density Clustering Hypersphere-based Self-adaptively Oversampling Algorithm for Imbalanced Datasets

Funds: The National Natural Science Foundation of China (62176050), The Natural Science Foundation of Shandong Provincial (ZR2024QA140)
  • 摘要: 不平衡数据分类是机器学习中的常见问题,过采样是解决方案之一。但现有过采样方法在处理复杂不均衡数据集时容易引入噪声样本导致类重叠,且无法有效解决低密度、小析取等子概念引起的类内不平衡问题。为此,该文提出一种基于超球体密度聚类的自适应过采样算法(DCHO),该算法通过计算少数类样本密度动态确定聚类中心,构建超球体并将超球体内少数类样本归入相应簇,再按照不均衡比调整超球体半径。同时,根据超球体内样本局部密度和半径大小自适应分配过采样权重,进而解决类内不平衡问题。为防止类重叠,过采样过程均在每个超球体内部进行。此外,为进一步增强少数类边界以及探索未知区域,该文还构建一种新的边界偏好随机过采样策略。实验结果表明,所提算法在避免类重叠的同时,强化了低密度子概念的表达,有效解决了类间与类内不平衡问题。
  • 图  1  不同算法所获得的过采样结果

    图  2  超球体构建过程

    图  3  算法的可视化过程

    图  4  过采样权重分配图

    图  5  合成样本的生成

    图  6  过采样后的结果

    图  7  不同方法在人工数据集上的采样结果

    图  8  各种算法以BPNN为分类器3种指标的平均秩

    图  9  各种算法以LDA为分类器3种指标的平均秩

    图  10  各种算法以SVM为分类器3种指标的平均秩

    图  11  3个性能指标的平均值随$ \alpha $变化情况

    1  基于密度的超球体过采样算法(DCHO

     输入:$ {X}\text{=}\text{[}{{X}}_{\text{min}}\text{.}{{X}}_{\text{m}\text{a}\text{j}}\text{]} $:原始数据;$ {{X}}_{\text{min}} $:原始数据中的少数
     类样本集;$ {X}_{\text{m}\text{a}\text{j}} $:原始数据中的多数类样本集。
     输出:$ {{X}}_{\mathrm{n}\mathrm{e}\mathrm{w}} $:最终数据集包含原始数据集和生成的数据集
     程序开始:
     通过z-score方法对所有样本进行归一化处理。
     步骤1 基于密度对少数类样本进行归簇.
     (1) $ {\boldsymbol{C}}_{{\text{min}}c}\text{=[}\text{ }\text{]} $ //存储归簇后的少数类子集
     (2) 根据式(1)计算少数类样本$ {\boldsymbol{x}}_{\text{min}{i}} $的局部密度$ {\rho}_{{i}} $
     (3)  While 还有未被归簇的少数类样本$ {\boldsymbol{x}}_{\text{min}{i}} $ do//构建超球体
        并执行聚类
     (4)  根据式(2)选取密度最大的少数类样本作为超球体球心$ {\boldsymbol{C}}_{{c}} $
     (5)  根据式(3)计算超球体球心$ {\boldsymbol{C}}_{{c}} $和多数类样本$ {\boldsymbol{x}}_{\text{m}\text{aj}{i}} $之间的欧
        式距离$ {\text{dist}}_{\text{maj}} $
     (6)  根据式(4)计算超球体的半径$ {T}\text{(}{\boldsymbol{C}}_{{c}}{)} $
     (7)  根据式(5)计算超球体球心$ {\boldsymbol{C}}_{{c}} $和少数类样本$ {\boldsymbol{x}}_{\text{min}{i}} $之间的
        欧式距离$ {\text{dist}}_{\text{min}} $
     (8)  if $ {\text{dist}}_{\text{min}}\text{ < }{T}\text{(}{\boldsymbol{C}}_{{c}}\text{)} $ do
     (9)   $ {\boldsymbol{C}}_{\text{min}{c}}\text{=}{\boldsymbol{C}}_{\text{min}\text{c}}\cup{\boldsymbol{x}}_{\text{min}\text{i}} $//将位于超球体内的少数类样本分
         配到簇$ {\boldsymbol{C}}_{\text{min}{c}} $
     (10)   将$ {\boldsymbol{x}}_{\text{min}{i}} $从$ {{X}}_{\text{min}} $中移除
     (11)   end if
     (12)   根据式(7)和式(8)调整超球体的半径$ T $
     (13) end while
     步骤2 为每个超球体分配过采样权重
     (1)  for c$ \text{=1:}{C} $ do//对每个超球体(少数类样本簇)
        $ {\boldsymbol{C}}_{\text{min}{c}}\text{,}\;\text{}{c}{=1,2,}\cdots \text{,}{C} $
     (2)  根据式(9)计算其权重影响因素${{p}}_{{c}} $
     (3)  根据式(10)计算其权重影响因素$ {{q}}_{{c}} $
     (4)  根据式(11)计算其权重$ {{w}}_{{c}} $
     (5)  end for
     (6)  根据式(12)计算过采样生成合成样本的总数量$ {{s}} $
     (7)  根据式(13)计算每个超球体(少数类样本簇)$ {\boldsymbol{C}}_{\text{min}{c}} $ 需要生
        成合成样本的数量$ {{N}}_{{c}} $
     步骤3 生成样本
     (1)  for c$ \text{=1:}{C} $ do //对每个超球体(少数类样本簇)
        $ {\boldsymbol{C}}_{\text{min}{c}}\text{,}\;\text{}\text{c}\text{=1,2,}\cdots \text{,}{C} $
     (2)   for $ {i}\text{=1:}{{N}}_{{c}} $ do
     (3)   根据式(14)–式(17)构造一个生成向量$ {{\boldsymbol{G}}}{(}{\boldsymbol{C}}_{{c}}\text{)} $ 。
     (4)   根据式(18)生成新样本$ {{{\boldsymbol{x}}}}_{\text{new}} $
     (5)   $ {{X}}_{\mathrm{n}\mathrm{e}\mathrm{w}}\text{=}{{{X}}}\cup {{x}}_{\text{new}} $ //合并数据集
     (6)   end for
     (7) end for
    下载: 导出CSV

    表  1  数据集信息

    数据集特征数少数类/多数类少数类类别不平衡比
    Liver6145/20011:1.38
    Pima8268/50011:1.87
    Yeast8429/ 105521:2.46
    Wine1348/13011:2.71
    Haberman381/22521:2.78
    Spect2255/21211:3.85
    Yeast18244/124031:5.08
    Traffic26163473/121519011:7.43
    Pageblock10560/491311:8.77
    Blabance449/576B1:11.76
    Libra9024/336151:14.00
    Seer11110411/242221881:21.94
    Yeast5820/46391:23.15
    Yeast6851/143351:28.10
    Sensors543790/217601341:49.69
    Iot110109278/695332891:63.63
    下载: 导出CSV

    表  2  参数信息

    算法 参数
    SMOTE $ {k}\text{=5} $
    SSMOTE $ {k}\text{=5} $
    BDSMOTE $ {k}\text{=5} $
    ADASYN $ {k}\text{=5} $, $ \text{dth=0.75} $, $ \beta\text{=1} $
    MWMOTE $ {{k}}_{\text{1}}{=5} $, $ {{k}}_{\text{2}}\text{=3} $, $ {{k}}_{\text{3}}\text{=}\left|{{S}}_{\text{min}}\right|\text{/2} $, $ {{C}}_{\text{p}}\text{=3} $, $ {{C}}_{\text{f}}\left(\text{th}\right)\text{=5} $, $ \text{CMAX=2} $
    KMSMOTE $ {{c}}_{\text{thres}}\in \left\{\text{1,2}\right\} $,$ \text{itr=1} $
    A-SUWO $ {{c}}_{\text{thres}}\in \text{{1,2}} $
    SMOTE-NaN-DE $ \text{SFGSS=8} $,$ \text{SFHC=20} $,$ \text{Fl=0.1} $,$ \text{Fu=0.9}, \tau \text{1=0.1} $,$ \tau \text{2=0.03} $,$ \tau \text{3=0.07} $
    GDO $ {k}\text{=5} $,$ {d}\text{=1} $
    RBO $ \text{step=}\text{0} $, $ \text{iterations=5}\;\text{000} $, $ \gamma\in\text{{0.001, 0.01,}\cdots \text{, 10}} $
    imFTP $ \text{mini-batch=200} $,学习率$ {=0.000\;2} $,训练轮数$ \text{=500} $
    下载: 导出CSV

    表  3  以DCHO为对照算法的Holm检验结果

    指标 方法 BPNN LDA SVM
    $ {\alpha }_{0.05} $ p-value $ {\alpha }_{0.05} $ p-value $ {\alpha }_{0.05} $ p-value
    G-Mean SMOTE 0.005 1 5.059 3e–14 0.005 6 2.121 9e–10 0.004 6 8.185 5e–20
    SSMOTE 0.008 5 3.924 6e–09 0.010 2 5.118 2e–07 0.005 1 1.930 8e–12
    BDSMOTE 0.005 6 1.026 2e–12 0.004 6 7.117 8e–12 0.006 3 7.305 8e–11
    ADASYN 0.010 2 1.867 7e–08 0.016 9 1.513 7e–05 0.010 2 1.425 5e–07
    MWMOTE 0.007 3 8.807 2e–12 0.005 1 7.387 0e–11 0.005 6 9.903 9e–12
    KMSMOTE 0.004 6 4.126 4e–14 0.006 3 3.847 3e–09 0.007 3 1.319 8e–09
    A-SUWO 0.006 3 1.854 6e–12 0.007 3 1.033 4e–08 0.008 5 2.791 6e–09
    SMOTE-NaN-DE 0.025 3 4.103 0e–04 0.025 3 1.941 6e–03 0.025 3 5.795 1e–03
    GDO 0.012 7 7.605 7e–06 0.012 7 6.725 0e–06 0.012 7 7.167 1e–05
    RBO 0.016 9 8.786 1e–06 0.008 5 8.222 8e–08 0.016 9 2.113 1e–04
    imFTP 0.05 0.044 9 0.05 0.183 7 0.05 0.130 2
    F-measure SMOTE 0.004 6 3.998 2e–16 0.004 6 3.995 9e–17 0.004 6 1.506 4e–18
    SSMOTE 0.008 5 1.095 5e–12 0.005 6 1.222 8e–13 0.005 1 5.028 4e–18
    BDSMOTE 0.010 2 1.217 4e–06 0.012 7 8.114 6e–05 0.010 2 1.857 1e–07
    ADASYN 0.007 3 1.591 7e–13 0.010 2 2.466 3e–08 0.007 3 3.965 8e–10
    MWMOTE 0.005 1 2.424 1e–15 0.005 1 2.141 8e–14 0.005 7 3.626 4e–16
    KMSMOTE 0.005 6 9.230 1e–15 0.007 3 5.281 4e–11 0.008 5 5.949 9e–10
    A-SUWO 0.006 3 1.281 8e–13 0.006 3 1.037 9e–12 0.006 4 8.421 2e–13
    SMOTE-NaN-DE 0.012 7 3.232 4e–05 0.008 5 9.650 7e–11 0.012 7 6.825 2e–05
    GDO 0.025 3 9.487 2e–04 0.025 3 1.139 1e–02 0.016 9 3.974 0e–03
    RBO 0.016 9 3.012 5e–04 0.016 9 8.401 2e–03 0.025 3 1.448 4e–02
    imFTP 0.05 0.0483 0.05 0.038 1 0.05 0.028 5
    AUC SMOTE 0.004 6 8.664 1e–20 0.005 1 6.308 3e–09 0.004 6 1.386 9e–11
    SSMOTE 0.007 3 3.810 4e–10 0.005 6 1.629 9e–08 0.006 3 4.666 2e–07
    BDSMOTE 0.008 5 7.865 0e–10 0.006 3 1.906 0e–08 0.010 2 7.684 4e–05
    ADASYN 0.006 3 1.830 7e–10 0.016 9 4.235 2e–06 0.005 1 1.013 7e–08
    MWMOTE 0.010 2 4.634 2e–09 0.010 2 1.618 9e–06 0.008 5 1.003 4e–05
    KMSMOTE 0.005 1 6.136 5e–12 0.008 5 2.168 1e–07 0.005 6 2.621 1e–08
    A-SUWO 0.005 6 1.522 2e–10 0.012 7 3.227 5e–06 0.007 3 1.279 2e–06
    SMOTE-NaN-DE 0.025 3 4.715 8e–06 0.025 3 1.831 5e–04 0.05 0.044 5
    GDO 0.012 7 5.944 4e–08 0.004 6 1.144 5e–13 0.025 3 2.064 7e–02
    RBO 0.016 9 1.428 3e–06 0.007 3 7.611 1e–08 0.012 7 3.151 5e–04
    imFTP 0.05 0.015 4 0.05 0.017 2 0.016 9 8.858 5e–03
    下载: 导出CSV

    表  4  使用不同采样策略的DCHO算法统计对比结果

    数据集 DCHO-SMOTE DCHO-RAN DCHO
    Liver 0.638 2±0.044 1 ($\approx $) 0.623 7±0.057 7 (+) 0.639 4±0.040 7
    Pima 0.735 2±0.030 1 (+) 0.735 3±0.028 1 (+) 0.748 5±0.026 5
    Yeast 0.713 6±0.029 0 (+) 0.701 1±0.027 4 (+) 0.731 3±0.020 3
    Wine 0.742 1±0.028 9 ($\approx $) 0.739 8±0.020 7 (+) 0.756 2±0.076 6
    Haberman 0.619 4±0.053 2 ($\approx $) 0.601 1±0.051 1 (+) 0.622 8±0.040 5
    Spect 0.742 5±0.043 5 ($ + $) 0.754 3±0.045 9 ($\approx $) 0.758 4±0.038 5
    Yeast1 0.754 2±0.044 1 (+) 0.749 7±0.050 0 (+) 0.774 1±0.037 6
    Traffic 0.882 4±0.032 4 (+) 0.888 0±0.032 9 ($\approx $) 0.893 5±0.028 6
    Pageblock 0.864 0±0.043 8 ($ + $) 0.844 8±0.043 9 ($ + $) 0.869 6±0.043 6
    Blabance 0.422 6±0.045 8 ($\approx $) 0.430 4±0.043 0 (+) 0.451 0±0.042 9
    Libra 0.775 4±0.046 5 ($ + $) 0.772 1±0.048 4 ($ + $) 0.790 5±0.042 2
    Seer 0.727 5±0.050 5 ($ + $) 0.728 1±0.050 2 ($ + $) 0.747 7±0.048 6
    Yeast5 0.761 4±0.042 0 (+) 0.755 9±0.050 5 (+) 0.735 8±0.050 1
    Yeast6 0.799 8±0.048 2 ($ + $) 0.806 8±0.051 7 ($ + $) 0.825 0±0.044 8
    Sensors 0.799 2±0.053 2 (+) 0.799 2±0.054 6 (+) 0.824 2±0.049 2
    Iot1 0.912 0±0.053 6 ($\approx $) 0.914 8±0.053 5 ($\approx $) 0.917 1±0.046 0
    +/–/$\approx $ 11/0/5 13/0/3
    下载: 导出CSV
  • [1] CHEN Zhuohang, CHEN Jinglong, FENG Yong, et al. Imbalance fault diagnosis under long-tailed distribution: Challenges, solutions and prospects[J]. Knowledge-Based Systems, 2022, 258: 110008. doi: 10.1016/J.KNOSYS.2022.110008.
    [2] CHEN Zheng, YANG Chen, ZHU Meilu, et al. Personalized retrogress-resilient federated learning toward imbalanced medical data[J]. IEEE Transactions on Medical Imaging, 2022, 41(12): 3663–3674. doi: 10.1109/TMI.2022.3192483.
    [3] TENG Hu, WANG Cheng, YANG Qing, et al. Leveraging adversarial augmentation on imbalance data for online trading fraud detection[J]. IEEE Transactions on Computational Social Systems, 2024, 11(2): 1602–1614. doi: 10.1109/TCSS.2023.3240968.
    [4] BLANCHARD A E, GAO Shang, YOON H J, et al. A keyword-enhanced approach to handle class imbalance in clinical text classification[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(6): 2796–2803. doi: 10.1109/JBHI.2022.3141976.
    [5] CHEN M F, NACHMAN B, and SALA F. Resonant anomaly detection with multiple reference datasets[J]. Journal of High Energy Physics, 2023, 2023(7): 188. doi: 10.1007/JHEP07(2023)188.
    [6] 高雷阜, 张梦瑶, 赵世杰. 融合簇边界移动与自适应合成的混合采样算法[J]. 电子学报, 2022, 50(10): 2517–2529. doi: 10.12263/DZXB.20210265.

    GAO Leifu, ZHANG Mengyao, and ZHAO Shijie. Mixed-sampling algorithm combining cluster boundary movement and adaptive synthesis[J]. Acta Electronica Sinica, 2022, 50(10): 2517–2529. doi: 10.12263/DZXB.20210265.
    [7] 职为梅, 常智, 卢俊华, 等. 面向不平衡图像数据的对抗自编码器过采样算法[J]. 电子与信息学报, 2024, 46(11): 4208–4218. doi: 10.11999/JEIT240330.

    ZHI Weimei, CHANG Zhi, LU Junhua, et al. Adversarial autoencoders oversampling algorithm for imbalanced image data[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4208–4218. doi: 10.11999/JEIT240330.
    [8] DU Guodong, ZHANG Jia, JIANG Min, et al. Graph-based class-imbalance learning with label enhancement[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 6081–6095. doi: 10.1109/TNNLS.2021.3133262.
    [9] JIN Xiaoyu, XIAO Fu, ZHANG Chong, et al. GEIN: An interpretable benchmarking framework towards all building types based on machine learning[J]. Energy and Buildings, 2022, 260: 111909. doi: 10.1016/J.ENBUILD.2022.111909.
    [10] 李帆, 张小恒, 李勇明, 等. 基于包络学习和分级结构一致性机制的不平衡集成算法[J]. 电子学报, 2024, 52(3): 751–761. doi: 10.12263/DZXB.20220712.

    LI Fan, ZHANG Xiaoheng, LI Yongming, et al. Imbalanced ensemble algorithm based on envelope learning and hierarchical structure consistency mechanism[J]. Acta Electronica Sinica, 2024, 52(3): 751–761. doi: 10.12263/DZXB.20220712.
    [11] LI Yanjiao, ZHANG Jie, ZHANG Sen, et al. Multi-objective optimization-based adaptive class-specific cost extreme learning machine for imbalanced classification[J]. Neurocomputing, 2022, 496: 107–120. doi: 10.1016/J.NEUCOM.2022.05.008.
    [12] 孙中彬, 刁宇轩, 马苏洋. 基于安全欠采样的不均衡多标签数据集成学习方法[J]. 电子学报, 2024, 52(10): 3392–3408. doi: 10.12263/DZXB.20240210.

    SUN Zhongbin, DIAO Yuxuan, and MA Suyang. An imbalanced multi-label data ensemble learning method based on safe under-sampling[J]. Acta Electronica Sinica, 2024, 52(10): 3392–3408. doi: 10.12263/DZXB.20240210.
    [13] TAO Xinmin, CHEN Wei, ZHANG Xiaohan, et al. SVDD boundary and DPC clustering technique-based oversampling approach for handling imbalanced and overlapped data[J]. Knowledge-Based Systems, 2021, 234: 107588. doi: 10.1016/J.KNOSYS.2021.107588.
    [14] SUN Zhongqiang, YING Wenhao, ZHANG Wenjin, et al. Undersampling method based on minority class density for imbalanced data[J]. Expert Systems with Applications, 2024, 249: 123328. doi: 10.1016/J.ESWA.2024.123328.
    [15] MA Tingting, LU Shuxia, and JIANG Chen. A membership-based resampling and cleaning algorithm for multi-class imbalanced overlapping data[J]. Expert Systems with Applications, 2024, 240: 122565. doi: 10.1016/J.ESWA.2023.122565.
    [16] TAO Xinmin, GUO Xinyue, ZHENG Yujia, et al. Self-adaptive oversampling method based on the complexity of minority data in imbalanced datasets classification[J]. Knowledge-Based Systems, 2023, 277: 110795. doi: 10.1016/J.KNOSYS.2023.110795.
    [17] LÓPEZ V ,FERNÁNDEZ A ,GARCÍA S, et al. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics[J]. Information Sciences, 2013, 250: doi: 10.1016/j.ins.2013.07.007113-141. 2.
    [18] TAO Xinmin, ZHANG Xiaohan, ZHENG Yujia, et al. A MeanShift-guided oversampling with self-adaptive sizes for imbalanced data classification[J]. Information Sciences, 2024, 672: 120699. doi: 10.1016/J.INS.2024.120699.
    [19] JIANG Zhen, ZHAO Lingyun, LU Yu, et al. A semi-supervised resampling method for class-imbalanced learning[J]. Expert Systems with Applications, 2023, 221: 119733. doi: 10.1016/J.ESWA.2023.119733.
    [20] BUNKHUMPORNPAT C, SINAPIROMSARAN K, and LURSINSAP C. Safe-Level-SMOTE: Safe-level-synthetic minority over-sampling TEchnique for handling the class imbalanced problem[C]. The 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Bangkok, Thailand, 2009. doi: 10.1007/978-3-642-01307-2_43.
    [21] LI Min, ZHOU Hao, LIU Qun, et al. WRND: A weighted oversampling framework with relative neighborhood density for imbalanced noisy classification[J]. Expert Systems with Applications, 2024, 241: 122593. doi: 10.1016/j.eswa.2023.122593.
    [22] PAN Tingting, ZHAO Junhong, WU Wei, et al. Learning imbalanced datasets based on SMOTE and Gaussian distribution[J]. Information Sciences, 2020, 512: 1214–1233. doi: 10.1016/j.ins.2019.10.048.
    [23] HAN Hui, WANG Wenyuan, and MAO Binghua. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]. The International Conference on Intelligent Computing Advances in Intelligent Computing, Hefei, China, 2005: 878–887. doi: 10.1007/11538059_91.
    [24] HE Haibo, BAI Yang, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 1322–1328. doi: 10.1109/IJCNN.2008.4633969.
    [25] BARUA S, ISLAM M, YAO Xin, et al. MWMOTE--majority weighted minority oversampling technique for imbalanced data set learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 405–425. doi: 10.1109/TKDE.2012.232.
    [26] MATHARAARACHCHI S, DOMARATZKI M, and MUTHUKUMARANA S. Enhancing SMOTE for imbalanced data with abnormal minority instances[J]. Machine Learning with Applications, 2024, 18: 100597. doi: 10.1016/J.MLWA.2024.100597.
    [27] KOZIARSKI M, KRAWCZYK B, and WOŹNIAK M. Radial-Based oversampling for noisy imbalanced data classification[J]. Neurocomputing, 2019, 343: 19–33. doi: 10.1016/j.neucom.2018.04.089.
    [28] DOUZAS G and BACAO F. Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE[J]. Information Sciences, 2019, 501: 118–135. doi: 10.1016/j.ins.2019.06.007.
    [29] XIE Yuxi, QIU Min, ZHANG Haibo, et al. Gaussian distribution based oversampling for imbalanced data classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(2): 667–679. doi: 10.1109/tkde.2020.2985965.
    [30] HOU Yaxin, DING Weiping, and ZHANG Chongsheng. imFTP: Deep imbalance learning via fuzzy transition and prototypical learning[J]. Information Sciences, 2024, 679: 121071. doi: 10.1016/J.INS.2024.121071.
    [31] LI Chuang, MAO Zhizhong, and JIA Mingxing. A real-valued label noise cleaning method based on ensemble iterative filtering with noise score[J]. International Journal of Machine Learning and Cybernetics, 2024, 15(9): 4093–4118. doi: 10.1007/S13042-024-02137-Z.
    [32] LAURIKKALA J. Improving identification of difficult small classes by balancing class distribution[C]. The 8th Conference on Artificial Intelligence in Medicine in Europe Artificial Intelligence in Medicine, Cascais, Portugal, 2001: 63–66. doi: 10.1007/3-540-48229-6_9.
    [33] NAPIERAŁA K, STEFANOWSKI J, and WILK S. Learning from imbalanced data in presence of noisy and borderline examples[C]. The 7th International Conference on Rough Sets and Current Trends in Computing, Warsaw, Poland, 2010: 158–167. doi: 10.1007/978-3-642-13529-3_18.
    [34] SÁEZ J A, LUENGO J, STEFANOWSKI J, et al. SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering[J]. Information Sciences, 2015, 291: 184–203. doi: 10.1016/j.ins.2014.08.051.
    [35] LI Junnan, ZHU Qingsheng, WU Quanwang, et al. SMOTE-NaN-DE: Addressing the noisy and borderline examples problem in imbalanced classification by natural neighbors and differential evolution[J]. Knowledge-Based Systems, 2021, 223: 107056. doi: 10.1016/J.KNOSYS.2021.107056.
    [36] SHI Hua, WU Chenjin, BAI Tao, et al. Identify essential genes based on clustering based synthetic minority oversampling technique[J]. Computers in Biology and Medicine, 2023, 153: 106523. doi: 10.1016/J.COMPBIOMED.2022.106523.
    [37] DOUZAS G, BACAO F, and LAST F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J]. Information Sciences, 2018, 465: 1–20. doi: 10.1016/j.ins.2018.06.056.
    [38] SONG Jia, HUANG Xianglin, QIN Sijun, et al. A bi-directional sampling based on K-means method for imbalance text classification[C]. 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, Okayama, Japan, 2016: 1–5. doi: 10.1109/ICIS.2016.7550920.
    [39] NEKOOEIMEHR I and LAI-YUEN S K. Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets[J]. Expert Systems with Applications, 2016, 46: 405–416. doi: 10.1016/j.eswa.2015.10.031.
    [40] WEI Jianan, HUANG Haisong, YAO Liguo, et al. IA-SUWO: An improving adaptive semi-unsupervised weighted oversampling for imbalanced classification problems[J]. Knowledge-Based Systems, 2020, 203: 106116. doi: 10.1016/j.knosys.2020.106116.
    [41] RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496. doi: 10.1126/science.1242072.
    [42] Machine learning repository UCI[EB/OL]. http://archive.ics.uci.edu/ml/datasets.html.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  170
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-22
  • 修回日期:  2025-04-24
  • 网络出版日期:  2025-05-15
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回