高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种结合波束成型的正交时频空迭代双重最大比值合并检测算法

裴二荣 吉祥慧 孙远欣 黎伟

裴二荣, 吉祥慧, 孙远欣, 黎伟. 一种结合波束成型的正交时频空迭代双重最大比值合并检测算法[J]. 电子与信息学报, 2025, 47(7): 2089-2097. doi: 10.11999/JEIT241035
引用本文: 裴二荣, 吉祥慧, 孙远欣, 黎伟. 一种结合波束成型的正交时频空迭代双重最大比值合并检测算法[J]. 电子与信息学报, 2025, 47(7): 2089-2097. doi: 10.11999/JEIT241035
PEI Errong, JI Xianghui, SUN Yuanxin, LI Wei. A Beamforming Combined Iterative Dual-Maximum Ratio Combining Detection Algorithm for Orthogonal Time Frequency Space Systems[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2089-2097. doi: 10.11999/JEIT241035
Citation: PEI Errong, JI Xianghui, SUN Yuanxin, LI Wei. A Beamforming Combined Iterative Dual-Maximum Ratio Combining Detection Algorithm for Orthogonal Time Frequency Space Systems[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2089-2097. doi: 10.11999/JEIT241035

一种结合波束成型的正交时频空迭代双重最大比值合并检测算法

doi: 10.11999/JEIT241035 cstr: 32379.14.JEIT241035
基金项目: 重庆市教委科学技术研究计划重大项目(KJZD-M202400602),重庆市自然科学基金(CSTB2024NSCQ-MSX0731)
详细信息
    作者简介:

    裴二荣:男,教授,研究方向为无线移动通信

    吉祥慧:男,硕士生,研究方向为OTFS信号检测

    孙远欣:男,博士,研究方向为无线移动通信

    黎伟:男,博士,研究方向为无线移动通信

    通讯作者:

    吉祥慧 jixhcqupt@qq.com

  • 中图分类号: TN929.5

A Beamforming Combined Iterative Dual-Maximum Ratio Combining Detection Algorithm for Orthogonal Time Frequency Space Systems

Funds: The Key Project of Science and Technology Research of Chongqing Education Commission, China (KJZD-M202400602), Chongqing Natural Science Foundation (CSTB2024NSCQ-MSX0731)
  • 摘要: 正交时频空(OTFS)调制方案有望通过将复杂的时频(TF)域信道转换为稀疏的时延-多普勒(DD)域信道,实现高机动环境下的可靠通信。基于此,绝大多数研究都以DD域信道的稀疏性为前提展开讨论。然而,在市区车联网、无人机蜂群和多用户MIMO等复杂通信场景下,DD域信道可能无法保证具有一定的稀疏度。这将对接收端检测的复杂度和准确性构成极大的挑战。针对这一问题,该文提出一种结合波束成型的OTFS迭代双重最大比值合并(Dual MRC)检测算法。其主要思想是在接收端每个用户使用多天线阵列和波束成型初步分离信道多径中的不同接收角度的信号,从而提高对应信道矩阵的稀疏度并提供分集增益;进一步,利用OTFS信号在时延-时间(DT)域中具有简化运算的性质,对每个波束成型分支中的多径分量以及所有波束成型分支信号依次进行相干合并,通过不断迭代得到最优估计值。仿真结果表明,所提算法在误码率方面显著优于一些典型的检测方案;与现有性能较好的波束成型MP-MRC算法相比,在误码率性能提升的同时,达到最优值所需的迭代次数和迭代耗时均大幅降低。
  • 图  1  所提OTFS接收器框图

    图  2  迭代Dual MRC与其他检测算法的误码率性能对比

    图  3  迭代Dual MRC与MP-MRC平均迭代次数对比

    图  4  不同移动速度下迭代Dual MRC算法误码率

    图  5  不同系统参数下迭代Dual MRC算法误码率

    图  6  不同信道路径下迭代Dual MRC算法误码率

    1  DT域结合波束成型的迭代Dual MRC检测算法

     输入:$ {\boldsymbol{\hat {\tilde {\boldsymbol x}}}}_m^{(0)},{\boldsymbol{y}}_m^{({\theta _b})},\tilde {\boldsymbol{\upsilon}} _{m,p}^{({\theta _b})}, \forall p,m,b $
     输出:$ {{\boldsymbol{\hat {\tilde {\boldsymbol x}}}}_m},{{\boldsymbol{\tilde x}}_m} ,\forall m $
     (1) for $ m = {\text{0}}:M' - {\text{1}} $ do
     (2)  for $ b = {\text{1}}:B $ do
     (3)   $ \Delta \tilde {\boldsymbol{y}}_m^{(0,{\theta _b})} = \tilde {\boldsymbol{y}}_m^{({\theta _b})} - \tilde {\boldsymbol{\upsilon}} _{m,p}^{({\theta _b})} \circ {\boldsymbol{\hat {\tilde {\boldsymbol x}}}}_{m - p}^{(0)} $
     (4)  end
     (5)  $ {{\boldsymbol{\tilde d}}_m} = \displaystyle\sum\nolimits_{b = 0}^{B - 1} {\displaystyle\sum\nolimits_{p \in \mathcal{P}} {{{\left( {\tilde{\boldsymbol{ \upsilon}} _{m + p,p}^{({\theta _b})}} \right)}^{\text{H}}} \circ \tilde {\boldsymbol{\upsilon}} _{m + p,p}^{({\theta _b})}} } $
     (6) end
     (7) for $ {\mathrm{iter}} = 1:{N_{{\text{iter}}}} $ do
     (8)  $ \Delta \tilde {\boldsymbol{y}}_m^{(i,{\theta _b})} = \Delta \tilde {\boldsymbol{y}}_m^{(i - 1,{\theta _b})} $
     (9)  for $ m = {\text{0}}:M' - {\text{1}} $ do
     (10)   $ \Delta {\boldsymbol{\tilde g}}_m^{(i)} = \displaystyle\sum\nolimits_{b = 0}^{B - 1} { \displaystyle\sum\nolimits_{p \in \mathcal{P}} {{{\left( {\tilde {\boldsymbol{\upsilon}} _{m + p,p}^{({\theta _b})}} \right)}^{\text{H}}} \circ \Delta \tilde {\boldsymbol{y}}_{m + p}^{(i,{\theta _b})}} } $
     (11)   $ {\boldsymbol{\tilde c}}_m^{(i)} = {\boldsymbol{\hat {\tilde {\boldsymbol x}}}}_m^{(i)} + \Delta {\boldsymbol{\tilde g}}_m^{(i)}{ \oslash }{\tilde {\boldsymbol{d}}_m} $
     (12)   $ {\boldsymbol{\hat {\tilde {\boldsymbol x}}}}_m^{(i)} = \omega {\boldsymbol{F}}_N^{\mathrm{H}}D\left( {{{\boldsymbol{F}}_N}{\boldsymbol{\tilde c}}_m^{(i)}} \right) + (1 - \omega ){\boldsymbol{\tilde c}}_m^{(i)},0 \le \omega \le 1 $
     (13)   for $ b = {\text{1}}:B $ do
     (14)    for $ p \in {\mathcal{P}} $ do
     (15)     $ \Delta \tilde {\boldsymbol{y}}_{m + p}^{(i,{\theta _b})} = \Delta \tilde {\boldsymbol{y}}_{m + p}^{(i - 1,{\theta _b})} - \tilde{\boldsymbol{ \upsilon}} _{m + p,p}^{({\theta _b})} $
                $ \circ \left({\boldsymbol{\hat {\tilde {\boldsymbol x}}}}_m^{(i)} - {\boldsymbol{\tilde x}}_m^{(i - 1)}\right) $
     (16)    end
     (17)   end
     (18) end
     (19) if $ \left\| {\Delta \tilde {\boldsymbol{y}}_m^{(i,{\theta _b})}} \right\| \ge \left\| {\Delta \tilde {\boldsymbol{y}}_m^{(i - 1,{\theta _b})}} \right\|,\forall m,b $
     (20)   break
     (21) end
     (22) end
    下载: 导出CSV

    表  1  仿真参数

    参数 取值
    子载波数$ M $ 32
    符号数$ N $ 16
    载波频率 4.0 GHz
    子载波间隔 15 kHz
    调制方案 QPSK, 16QAM, 64QAM
    信道模型 EVA[20]
    接收天线数 8
    终端移动速度 500 km/h
    波束成型角度 [$ {30^ \circ },{60^ \circ },{90^ \circ },{120^ \circ },{150^ \circ } $]
    下载: 导出CSV

    表  3  计算总复杂度对比

    检测算法 总复杂度 计算量
    文献[19] $ {\mathcal{O}}(M'NB|{\mathcal{P}}|) $ $ 2.16 \times {10^4} $
    本文 $ {\mathcal{O}}[({N_{{\text{iter}}}} + {N_{\text{r}}})M'NB|{\mathcal{P}}|] $ $ 2.81 \times {10^5} $
    MP-MRC[5] $ {\mathcal{O}}\left( {{N_{{\text{iter}}}}M'NBS|{\mathbb{A}}|} \right) $ $ {\text{3}}{\text{.46}} \times {10^7} $
    下载: 导出CSV
  • [1] WU Jingxian and FAN Pingzhi. A survey on high mobility wireless communications: Challenges, opportunities and solutions[J]. IEEE Access, 2016, 4: 450–476. doi: 10.1109/ACCESS.2016.2518085.
    [2] WANG Chengxiang, YOU Xiaohu, GAO Xiqi, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. doi: 10.1109/COMST.2023.3249835.
    [3] YUAN Weijie, LI Shuangyang, WEI Zhiqiang, et al. New delay Doppler communication paradigm in 6G era: A survey of orthogonal time frequency space (OTFS)[J]. China Communications, 2023, 20(6): 1–25. doi: 10.23919/JCC.fa.2022-0578.202306.
    [4] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. The 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
    [5] CHENG Junqiang, JIA Chenglu, GAO Hui, et al. OTFS based receiver scheme with multi-antennas in high-mobility V2X systems[C]. The 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICCWorkshops49005.2020.9145313.
    [6] LIU Haoyan, LIU Yanming, YANG Min, et al. On the characterizations of OTFS modulation over multipath rapid fading channel[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 2008–2021. doi: 10.1109/TWC.2022.3208161.
    [7] RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011.
    [8] MA Yiyan, MA Guoyu, AI Bo, et al. Characteristics of channel spreading function and performance of OTFS in high-speed railway[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 7038–7054. doi: 10.1109/TWC.2023.3247736.
    [9] THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276.
    [10] TIWARI S, DAS S S, and RANGAMGARI V. Low complexity LMMSE receiver for OTFS[J]. IEEE Communications Letters, 2019, 23(12): 2205–2209. doi: 10.1109/LCOMM.2019.2945564.
    [11] SURABHI G D and CHOCKALINGAM A. Low-Complexity linear equalization for OTFS modulation[J]. IEEE Communications Letters, 2020, 24(2): 330–334. doi: 10.1109/LCOMM.2019.2956709.
    [12] LI Haotian and YU Qiyue. Doubly-iterative sparsified MMSE turbo equalization for OTFS modulation[J]. IEEE Transactions on Communications, 2023, 71(3): 1336–1351. doi: 10.1109/TCOMM.2023.3237243.
    [13] YUAN Weijie, WEI Zhiqiang, YUAN Jinhong, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7976–7980. doi: 10.1109/TVT.2020.2991443.
    [14] XIANG Luping, LIU Yusha, YANG Lieliang, et al. Gaussian approximate message passing detection of orthogonal time frequency space modulation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10999–11004. doi: 10.1109/TVT.2021.3102673.
    [15] LIU Fei, YUAN Zhengdao, GUO Qinghua, et al. Multi-block UAMP-based detection for OTFS with rectangular waveform[J]. IEEE Wireless Communications Letters, 2022, 11(2): 323–327. doi: 10.1109/LWC.2021.3126871.
    [16] YUAN Zongming, TANG Meng, CHEN Jianhua, et al. Low complexity parallel symbol detection for OTFS modulation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4904–4918. doi: 10.1109/TVT.2022.3227282.
    [17] LI Xiang and YUAN Weijie. OTFS detection based on Gaussian mixture distribution: A generalized message passing approach[J]. IEEE Communications Letters, 2024, 28(1): 178–182. doi: 10.1109/LCOMM.2023.3318312.
    [18] ZHANG Zhengquan, LIU Heng, WANG Qianli, et al. A survey on low complexity detectors for OTFS systems[J]. ZTE Communications, 2021, 19(4): 3–15. doi: 10.12142/ZTECOM.202104002.
    [19] SHAN Yaru and WANG Fanggang. Low-complexity and low-overhead receiver for OTFS via large-scale antenna array[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5703–5718. doi: 10.1109/TVT.2021.3072667.
    [20] Technical Specification Group Radio Access Network. Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) radio transmission and reception[R]. 36.101, 2020.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  81
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-22
  • 修回日期:  2025-05-21
  • 网络出版日期:  2025-06-06
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回