高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射表面辅助通信中的码本攻击和伪装方法

李润宇 彭薇 周健龙

李润宇, 彭薇, 周健龙. 智能反射表面辅助通信中的码本攻击和伪装方法[J]. 电子与信息学报. doi: 10.11999/JEIT240991
引用本文: 李润宇, 彭薇, 周健龙. 智能反射表面辅助通信中的码本攻击和伪装方法[J]. 电子与信息学报. doi: 10.11999/JEIT240991
LI Runyu, PENG Wei, ZHOU JianLong. Codebook Attack and Camouflage Solution in Intelligent Reflective Surface-aided Wireless Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240991
Citation: LI Runyu, PENG Wei, ZHOU JianLong. Codebook Attack and Camouflage Solution in Intelligent Reflective Surface-aided Wireless Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240991

智能反射表面辅助通信中的码本攻击和伪装方法

doi: 10.11999/JEIT240991
基金项目: 国家自然科学基金(62171192),深圳市科技局国际合作项目(GTHz20220913143401002),中建股份科技研发计划(CSCEC-PT-010)
详细信息
    作者简介:

    李润宇:男,博士生,研究方向为IRS及物理层安全

    彭薇:女,教授,研究方向为大规模信号与数据处理研究

    周健龙:男,硕士生,研究方向为建筑物联网,智慧园区,城市运营

    通讯作者:

    彭薇 pengwei@hust.edu.cn

  • 中图分类号: TN92

Codebook Attack and Camouflage Solution in Intelligent Reflective Surface-aided Wireless Communications

Funds: The National Natural Science Foundation of China (62171192), The Collaborative Project of Shenzhen Science and Technology Bureau (GTHz20220913143401002), The Research and Development Project of CSCEC (CSCEC-PT-010)
  • 摘要: 智能反射表面(IRS)可以在一定程度上重构无线信道,在提升无线通信系统安全性方面具有较大潜力。然而,无线通信系统引入IRS进行安全辅助的同时,也引入了与IRS自身相关的安全问题。如果IRS的实时码本遭到恶意用户窃取,恶意用户可以推测出基站(BS)至IRS的波束方向,从而对其他合法接入的用户实施高效而隐蔽的窃听。该文首先提出根据窃取到的实时码本推测BS-IRS波束方向的方法。随后,针对这种码本攻击提出码本伪装方法,即部分IRS单元仅有相位,但并不辐射能量,属于未被激活的状态,其余IRS单元正常工作,属于激活态。伪装后的码本可以误导窃听者对BS-IRS信道的波束方向作出误判。为了确定伪装码本的拓扑结构和相位配置,该文采用了分割排序算法(DaS)和禁忌搜索算法(TS),使得伪装码本的保密速率最大。实验结果表明,所提码本伪装方法能有效误导恶意用户,使其在窃听方向上的信号增益近似为0。
  • 图  1  IRS控制器被入侵,码本信息泄露

    图  2  码本攻击

    图  3  码本伪装

    图  4  SNR随激活态IRS单元数目$ {N}_{{\mathrm{T}}} $的变化

    图  5  CSR随激活态IRS单元数目的变化

    图  6  IRS规格和激活态IRS单元数之间的线性拟合

  • [1] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [2] JIANG Hao, XIONG Baiping, ZHANG Hongming, et al. Physics-based 3D end-to-end modeling for double-RIS assisted non-stationary UAV-to-ground communication channels[J]. IEEE Transactions on Communications, 2023, 71(7): 4247–4261. doi: 10.1109/TCOMM.2023.3266832.
    [3] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [4] JIANG Hao, XIONG Baiping, ZHANG Hongming, et al. Hybrid far- and near-field modeling for reconfigurable intelligent surface assisted V2V channels: A sub-array partition based approach[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8290–8303. doi: 10.1109/TWC.2023.3262063.
    [5] NAEEM F, ALI M, KADDOUM G, et al. Security and privacy for reconfigurable intelligent surface in 6G: A review of prospective applications and challenges[J]. IEEE Open Journal of the Communications Society, 2023, 4: 1196–1217. doi: 10.1109/OJCOMS.2023.3273507.
    [6] 齐本胜, 饶星楠, 邓志祥, 等. 智能反射表面辅助的全双工通信系统的物理层安全设计[J]. 电子与信息学报, 2023, 45(6): 1990–1998. doi: 10.11999/JEIT220547.

    QI Bensheng, RAO Xingnan, DENG Zhixiang, et al. Physical layer security for intelligent reflecting surface assisted full-duplex communication[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1990–1998. doi: 10.11999/JEIT220547.
    [7] CHEN Jie, LIANG Yingchang, PEI Yiyang, et al. Intelligent reflecting surface: A programmable wireless environment for physical layer security[J]. IEEE Access, 2019, 7: 82599–82612. doi: 10.1109/ACCESS.2019.2924034.
    [8] 杨杰, 季新生, 王飞虎, 等. 窃听者随机分布下智能反射面辅助的MISO系统物理层安全性能分析[J]. 电子与信息学报, 2022, 44(5): 1809–1818. doi: 10.11999/JEIT210209.

    YANG Jie, JI Xinsheng, WANG Feihu, et al. Performance analysis of physical layer security for IRS-aided MISO system with randomly distributed eavesdropping nodes[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1809–1818. doi: 10.11999/JEIT210209.
    [9] 雷维嘉, 翟泽旭, 雷宏江, 等. 不准确CSI下智能反射表面辅助的多用户系统物理层安全方案设计[J]. 电子与信息学报, 2022, 44(7): 2299–2308. doi: 10.11999/JEIT220405.

    LEI Weijia, ZHAI Zexu, LEI Hongjiang, et al. Design of physical layer security scheme for intelligent reflecting surface assisted multi-user system with imperfect CSI[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2299–2308. doi: 10.11999/JEIT220405.
    [10] YANG Helin, XIONG Zehui, ZHAO Jun, et al. Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 375–388. doi: 10.1109/TWC.2020.3024860.
    [11] CHEN Xinying, AN Jianping, XIONG Zehui, et al. Covert communications: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1173–1198. doi: 10.1109/COMST.2023.3263921.
    [12] WANG Chao, LI Zan, SHI Jia, et al. Intelligent reflecting surface-assisted multi-antenna covert communications: Joint active and passive beamforming optimization[J]. IEEE Transactions on Communications, 2021, 69(6): 3984–4000. doi: 10.1109/TCOMM.2021.3062376.
    [13] WANG Yazheng, LU Hancheng, ZHAO Dan, et al. Wireless communication in the presence of illegal reconfigurable intelligent surface: Signal leakage and interference attack[J]. IEEE Wireless Communications, 2022, 29(3): 131–138. doi: 10.1109/MWC.008.2100560.
    [14] ZHOU Xiangyun, MAHAM B, and HJORUNGNES A. Pilot contamination for active eavesdropping[J]. IEEE Transactions on Wireless Communications, 2012, 11(3): 903–907. doi: 10.1109/TWC.2012.020712.111298.
    [15] HUANG Kewen and WANG Huiming. Intelligent reflecting surface aided pilot contamination attack and its countermeasure[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 345–359. doi: 10.1109/TWC.2020.3024808.
    [16] ALAKOCA H, NAMDAR M, ALDIRMAZ-COLAK S, et al. Metasurface manipulation attacks: Potential security threats of RIS-aided 6G communications[J]. IEEE Communications Magazine, 2023, 61(1): 24–30. doi: 10.1109/MCOM.005.2200162.
    [17] ACHARJEE S S and CHATTOPADHYAY A. Design and detection of controller manipulation attack on RIS assisted communication[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(6): 1626–1641. doi: 10.1109/JSAC.2024.3389119.
    [18] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
    [19] CHEN Zhen, GUO Yeyong, ZHANG Peichang, et al. Physical layer security improvement for hybrid RIS-assisted MIMO communications[J]. IEEE Communications Letters, 2024, 28(11): 2493–2497. doi: 10.1109/LCOMM.2024.3427010.
    [20] LI Dong. Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[J]. IEEE Communications Letters, 2020, 24(8): 1646–1650. doi: 10.1109/LCOMM.2020.2997027.
    [21] LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication[J]. IEEE Transactions on Communications, 2022, 70(2): 1320–1331. doi: 10.1109/TCOMM.2021.3128544.
    [22] YU Xianhua and LI Dong. Phase shift compression for control signaling reduction in IRS-aided wireless systems: Global attention and lightweight design[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8528–8541. doi: 10.1109/TWC.2024.3351755.
    [23] ZHANG Hongliang, DI Boya, SONG Lingyang, et al. Reconfigurable intelligent surfaces assisted communications with limited phase shifts: How many phase shifts are enough?[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4498–4502. doi: 10.1109/TVT.2020.2973073.
    [24] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [25] XIONG Rujing, DONG Xuehui, MI Tiebin, et al. Optimal discrete beamforming of RIS-aided wireless communications: An inner product maximization approach[EB/OL]. https://arxiv.org/html/2211.04167v7, 2022.
    [26] ZHANG Yaowen, SHEN Kaiming, REN Shuyi, et al. Configuring intelligent reflecting surface with performance guarantees: Optimal beamforming[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 967–979. doi: 10.1109/JSTSP.2022.3176479.
    [27] KARYSTINOS G N and PADOS D A. Rank-2-optimal adaptive design of binary spreading codes[J]. IEEE Transactions on Information Theory, 2007, 53(9): 3075–3080. doi: 10.1109/TIT.2007.903130.
    [28] SU Ruochen, DAI Linglong, TAN Jingbo, et al. Capacity enhancement for irregular reconfigurable intelligent surface-aided wireless communications[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9348273.
  • 加载中
图(6)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  28
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-06
  • 修回日期:  2025-04-10
  • 网络出版日期:  2025-04-29

目录

    /

    返回文章
    返回