高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙集信息系统实现自适应O-OFDM符号分解信号检测研究

贾科军 车佳祺 刘佳欣 缐玉琴 秦翠翠 杨博然

贾科军, 车佳祺, 刘佳欣, 缐玉琴, 秦翠翠, 杨博然. 粗糙集信息系统实现自适应O-OFDM符号分解信号检测研究[J]. 电子与信息学报, 2025, 47(5): 1461-1473. doi: 10.11999/JEIT240864
引用本文: 贾科军, 车佳祺, 刘佳欣, 缐玉琴, 秦翠翠, 杨博然. 粗糙集信息系统实现自适应O-OFDM符号分解信号检测研究[J]. 电子与信息学报, 2025, 47(5): 1461-1473. doi: 10.11999/JEIT240864
JIA Kejun, CHE Jiaqi, LIU Jiaxin, XIAN Yuqin, QIN Cuicui, YANG Boran. Research on Signal Detection of Adaptive O-OFDM Symbol Decomposition in Rough Set Information System[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1461-1473. doi: 10.11999/JEIT240864
Citation: JIA Kejun, CHE Jiaqi, LIU Jiaxin, XIAN Yuqin, QIN Cuicui, YANG Boran. Research on Signal Detection of Adaptive O-OFDM Symbol Decomposition in Rough Set Information System[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1461-1473. doi: 10.11999/JEIT240864

粗糙集信息系统实现自适应O-OFDM符号分解信号检测研究

doi: 10.11999/JEIT240864 cstr: 32379.14.JEIT240864
基金项目: 国家自然科学基金(62265010),甘肃省自然科学基金资助项目(22JR5RA276),兰州理工大学博士科研启动经费项目(061903),甘肃省教育厅:研究生“创新之星”项目(2025CXZX-575)
详细信息
    作者简介:

    贾科军:男,博士,教授,研究方向为可见光通信理论与技术

    车佳祺:男,硕士生,研究方向为可见光通信LED非线性抑制、深度学习和粗糙集理论

    刘佳欣:女,研究方向为可见光通信LED非线性抑制

    缐玉琴:女,硕士生,研究方向为可见光通信LED非线性抑制

    秦翠翠:女,硕士,研究方向为可见光通信LED非线性抑制

    杨博然:男,博士生,研究方向为可见光通信LED非线性抑制

    通讯作者:

    贾科军 kjjia@lut.edu.cn

  • 中图分类号: TN929.12

Research on Signal Detection of Adaptive O-OFDM Symbol Decomposition in Rough Set Information System

Funds: The National Natural Science Foundation of China (62265010), The Natural Science Foundation of Gansu Province (22JR5RA276), The Ph.D. Research Funding of Lanzhou University of Technology (061903), Gansu Provincial Department of Education: Graduate Student “Innovation Star” Project (2025CXZX-575)
  • 摘要: 自适应光正交频分复用符号分解串行传输(O-OFDM-ASDST)可以有效抑制可见光通信(VLC)中发光二极管(LED)的非线性限幅失真,然而,O-OFDM-ASDST在接收端合并分解符号时会导致加性高斯白噪声(AWGN)叠加,从而引起误码率(BER)恶化。为此,该文基于人工智能粒计算的粗糙集理论(RST)信息系统与不可分辨关系,提出一种O-OFDM-ASDST信号检测算法。首先,将接收端时域抽样值作为论域,并将信号特征作为条件属性构建信息系统。通过决策规则对接收的分解符号进行分类,尽可能分类决策出原本等于门限值和零值的时域抽样值;然后,根据制定的决策规则导出不可分辨关系,并通过属性约简提取处于门限值之间的时域抽样值并进行重构,以达到降低重构算法复杂度的目的;最后,采用蒙特卡罗仿真方法,验证检测算法的性能。结果表明,与对比信号检测算法相比,该文检测算法在房间中心位置的BER性能可获得5.4 dB和1 dB的信噪比(SNR)增益;即使在房间边缘位置,也可以获得5.5 dB和0.8 dB的SNR增益。此外,检测算法的复杂度仅为对比信号检测算法的1/10。综上所述,所提检测算法能够有效抑制AWGN,提高BER性能,并显著降低算法复杂度和处理时延。
  • 图  1  RST-ASDST系统原理图

    图  2  DCO-OFDM-ASDST分解符号

    图  3  不同决策规则正确率对比

    图  4  不同决策规则召回率对比

    图  5  室内VLC几何场景分布

    图  6  LED与PD之间的多径信道增益

    图  7  PD位于中心位置时ACO-OFDM-ASDST和DCO-OFDM-ASDST系统BER性能

    图  8  PD位于边缘位置时ACO-OFDM-ASDST和DCO-OFDM-ASDST系统BER性能

    图  9  16QAM下DCO-OFDM-ASDST不同直流偏置BER性能

    图  10  不同直流偏置下接收端分解符号

    图  11  不同信号检测算法BER分布

    图  12  ACO-OFDM-ASDST重构算法复杂度分析

    图  13  ACO-OFDM-ASDST和DCO-OFDM-ASDST系统实值计算资源分析

    表  1  ACO-OFDM-ASDST信息系统

    符号时域抽样值 条件属性C 决策属性D
    U 1 2 3 ${\varepsilon _{{\text{top}}}}$ ${\varepsilon _{{\text{bottom}}}}$ $ {\varepsilon _{{\text{bottom}}}} < {\boldsymbol y}_{{\text{del-DC}}}^{\left( i \right)}\left( k \right) < {\varepsilon _{{\text{top}}}} $
    $ {{\boldsymbol y}_{{\text{del-DC}}}^{\left( 1\right)}\left( k \right)} $ Y N N T F F
    ${{\boldsymbol y}_{{\text{del-DC}}}^{\left( 2\right)}\left( k \right)} $ N Y N F T F
    ${{\boldsymbol y}_{{\text{del-DC}}}^{\left( 3\right)}\left( k \right)} $ N
    N
    Y
    N
    N
    Y
    F
    F
    T
    F
    F
    T
    ${{\boldsymbol y}_{{\text{del-DC}}}^{\left( 3\right)}\left( k \right)} $

    Y

    N

    N

    T

    F

    F
    ${{\boldsymbol y}_{{\text{del-DC}}}^{\left( l\right)}\left( k \right)} $
    下载: 导出CSV

    表  2  ACO-OFDM-ASDST与DCO-OFDM-ASDST决策规则

    $\varphi \left( n \right)$决策规则
    O-OFDM-ASDSTACO-OFDM-ASDSTDCO-OFDM-ASDST
    $\varphi \left( 1 \right)$${\phi _1}:\left( {1 = Y} \right) \wedge \left( {2 = N} \right),{\phi _2}:\left( {2 = Y} \right) \wedge \left( {1 = N} \right)$${\phi _1}:\left( {1 = Y} \right) \wedge \left( {2 = N} \right)$,${\phi _2}:\left( {2 = Y} \right) \wedge \left( {1 = N} \right)$,${\phi _3}:\left( {3 = Y} \right) \wedge \left( {2 = N} \right)$
    $\varphi \left( 2 \right)$${\phi _1}:\left( {1 = Y} \right) \vee \left( {2 = Y} \right),{\phi _2}:\left( {2 = Y} \right) \vee \left( {1 = Y} \right)$${\phi _1}:\left( {1 = Y} \right) \vee \left( {2 = Y} \right)$,${\phi _2}:\left( {2 = Y} \right) \vee \left( {1 = Y} \right)$,
    ${\phi _3}:\left( {3 = Y} \right) \vee \left( {2 = Y} \right)$
    $\varphi \left( 3 \right)$${\phi _1}:\left( {1 = N} \right) \wedge \left( {2 = N} \right),{\phi _2}:\left( {2 = N} \right) \wedge \left( {1 = N} \right)$${\phi _1}:\left( {1 = N} \right) \wedge \left( {2 = N} \right)$,${\phi _2}:\left( {2 = N} \right) \wedge \left( {1 = N} \right)$,
    ${\phi _3}:\left( {3 = N} \right) \wedge \left( {2 = N} \right)$
    下载: 导出CSV

    表  3  仿真参数

    参数
    LED位置坐标[x, y, z] (m)[3,3,3.5]
    PD位置坐标[x, y, z] (m)[3,3,0.85] / [0.5,0.5,0.85]
    PD视场角${\psi _{{\text{FOV}}}}$ (°)70
    LED半功率角${\tau _{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}$ (°)60
    PD的面积AR (cm2)1
    墙面反射率${\rho _i}$0.8
    反射单元面积$ \Delta A $ (m2)0.01
    下载: 导出CSV

    表  4  不同重构算法复杂度

    算法复杂度
    文献[22]重构算法$ O\left( {l \times {N_{\text{S}}}} \right) $
    改进重构算法$ O\left( {N_{\text{S}}^{\left( 1 \right)} + N_{\text{S}}^{\left( 2 \right)} + \cdots + N_S^{\left( l \right)}} \right) $
    下载: 导出CSV

    表  5  ACO-OFDM-ASDST与DCO-OFDM-ASDST系统实值计算资源

    O-OFDM-ASDST系统文献[22]重构算法改进重构算法
    ACO-OFDM-ASDST系统$O\left( {4\left( {l \times {N_{\text{S}}}} \right)} \right)$$O\left( {4N_{\text{S}}^{\left( l \right)}} \right)$
    DCO-OFDM-ASDST系统$O\left( {2\left( {l \times {N_{\text{S}}}} \right)} \right)$$O\left( {2N_{\text{S}}^{\left( l \right)}} \right)$
    下载: 导出CSV
  • [1] YANG Ping, XIAO Yue, XIAO Ming, et al. 6G wireless communications: Vision and potential techniques[J]. IEEE Network, 2019, 33(4): 70–75. doi: 10.1109/MNET.2019.1800418.
    [2] 王铠尧, 洪智勇, 曾志强. 可见光通信系统的符号定时偏移估计方法[J]. 光学学报, 2022, 42(7): 0706007. doi: 10.3788/AOS202242.0706007.

    WANG Kaiyao, HONG Zhiyong, and ZENG Zhiqiang. Symbol timing offset estimation method for visible light communication systems[J]. Acta Optica Sinica, 2022, 42(7): 0706007. doi: 10.3788/AOS202242.0706007.
    [3] SEJAN M A S, RAHMAN M H, AZIZ M A, et al. A comprehensive survey on MIMO visible light communication: Current research, machine learning and future trends[J]. Sensors, 2023, 23(2): 739. doi: 10.3390/s23020739.
    [4] PRASHANT D, VIPUL D, and ATUI K. A survey on visible light communication for 6G: Architecture, application and challenges[C]. 2023 International Conference on Computer, Electronics & Electrical Engineering & Their Applications (IC2E3), Srinagar Garhwal, India, 2023: 1–6. DOI: 10.1109/IC2E357697.2023.10262462.
    [5] 杨彦兵, 胡超, 鲁邦彦, 等. 基于可见光和射频融合的通信定位一体化系统[J]. 通信学报, 2023, 44(12): 146–157. doi: 10.11959/j.issn.1000-436x.2023230.

    YANG Yanbing, HU Chao, LU Bangyan, et al. Integrated communication and positioning system enabled by fusing visible light and RF[J]. Journal on Communications, 2023, 44(12): 146–157. doi: 10.11959/j.issn.1000-436x.2023230.
    [6] DIMITROV S and HAAS H. Information rate of OFDM-based optical wireless communication systems with nonlinear distortion[J]. Journal of Lightwave Technology, 2013, 31(6): 918–929. doi: 10.1109/JLT.2012.2236642.
    [7] ELGALA H, MESLEH R, and HAAS H. Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs[J]. International Journal of Ultra Wideband Communications and Systems, 2009, 1(2): 143–150. doi: 10.1504/IJUWBCS.2009.029003.
    [8] GREEN R J, JOSHI H, HIGGINS M D, et al. Recent developments in indoor optical wireless systems[J]. IET Communications, 2008, 2(1): 3–10. doi: 10.1049/iet-com:20060475.
    [9] 方智敬, 陈媛, 王俊杰. 改进的可见光通信系统PTS峰均比抑制方法[J]. 系统工程与电子技术, 2024, 46(7): 2509–2514. doi: 10.12305/j.issn.1001-506X.2024.07.33.

    FANG Zhijing, CHEN Yuan, and WANG Junjie. Improved PTS peak-to-average ratio suppression method in visible light communication system[J]. Systems Engineering and Electronics, 2024, 46(7): 2509–2514. doi: 10.12305/j.issn.1001-506X.2024.07.33.
    [10] 吴让仲, 刘珂, 周峰, 等. 结合PWC技术的LED室内定位算法[J]. 华中科技大学学报(自然科学版), 2021, 49(5): 7–12. doi: 10.13245/j.hust.210502.

    WU Rangzhong, LIU Ke, ZHOU Feng, et al. LED based indoor positioning algorithm combined with PWC[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(5): 7–12. doi: 10.13245/j.hust.210502.
    [11] YING Kai, YU Zhenhua, BAXLEY R J, et al. Nonlinear distortion mitigation in visible light communications[J]. IEEE Wireless Communications, 2015, 22(2): 36–45. doi: 10.1109/MWC.2015.7096283.
    [12] 张雨桐, 赵黎, 张峰. 基于小波变换的可见光OFDM通信系统性能优化[J]. 激光技术, 2020, 44(2): 261–265. doi: 10.7510/jgjs.issn.1001-3806.2020.02.022.

    ZHANG Yutong, ZHAO Li, and ZHANG Feng. Performance optimization of visible light OFDM communication system based on wavelet transform[J]. Laser Technology, 2020, 44(2): 261–265. doi: 10.7510/jgjs.issn.1001-3806.2020.02.022.
    [13] LI Jianfeng, LIU Xiaoshuang, REN Yahao, et al. Single-FFT receiver with pairwise maximum likelihood for layered ACO-OFDM[J]. IEEE Photonics Journal, 2021, 13(4): 7300906. doi: 10.1109/JPHOT.2021.3105812.
    [14] NIWAREEBA R, COX M A, and CHENG Ling. PAPR reduction in optical OFDM using lexicographical permutations with low complexity[J]. IEEE Access, 2022, 10: 1706–1713. doi: 10.1109/ACCESS.2021.3138193.
    [15] ZENHOM Y A, HAMAD E K I, and ELNABAWY M M. Throughput improvement in ACO-OFDM-based VLC systems using noise cancellation and precoding techniques[J]. Optical and Quantum Electronics, 2024, 56(11): 1798. doi: 10.1007/s11082-024-07592-0.
    [16] XU Xianying, ZHANG Qi, and YUE Dianwu. Orthogonal frequency division multiplexing with index modulation based on discrete hartley transform in visible light communications[J]. IEEE Photonics Journal, 2022, 14(3): 7330310. doi: 10.1109/JPHOT.2022.3174283.
    [17] DEEPA T, SUSEELA V, and MANI V V. Performance analysis of novel precoding matrix techniques for optical OFDM-based visible light communication systems[J]. Optics & Laser Technology, 2022, 154: 108293. doi: 10.1016/j.optlastec.2022.108293.
    [18] CINEMRE I, AYDIN V, and HACIOGLU G. Papr reduction through Gaussian pre-coding in DCO-OFDM systems[J]. Optical and Quantum Electronics, 2024, 56(6): 958. doi: 10.1007/s11082-024-06911-9.
    [19] MESLEH R. LED clipping distortion compensation in optical wireless communication via multiple transmit LEDs[J]. Photonic Network Communications, 2013, 26(1): 25–31. doi: 10.1007/s11107-013-0406-2.
    [20] 贾科军, 杨博然, 陆皓, 等. 可见光通信光正交频分复用系统符号分解技术抑制LED非线性失真研究[J]. 中国激光, 2020, 47(4): 0406002. doi: 10.3788/CJL202047.0406002.

    JIA Kejun, YANG Boran, LU Hao, et al. LED nonlinearity mitigation for visible light communication optical-orthogonal frequency division multiplexing system with symbol decomposing techniques[J]. Chinese Journal of Lasers, 2020, 47(4): 0406002. doi: 10.3788/CJL202047.0406002.
    [21] 贾科军, 杨博然, 曹明华, 等. 可见光通信自适应O-OFDM符号分解串行传输系统设计与研究[J]. 通信学报, 2020, 41(9): 179–189. doi: 10.11959/j.issn.1000-436x.2020179.

    JIA Kejun, YANG Boran, CAO Minghua, et al. Design and research of adaptive O-OFDM symbol decomposing with serial transmission system in visible light communication[J]. Journal on Communications, 2020, 41(9): 179–189. doi: 10.11959/j.issn.1000-436x.2020179.
    [22] 贾科军, 秦翠翠, 蔺莹, 等. 一种自适应O-OFDM符号分解串行传输系统接收机设计[J]. 电子学报, 2023, 51(7): 1741–1749. doi: 10.12263/DZXB.20220248.

    JIA Kejun, QIN Cuicui, LIN Ying, et al. A receiver design for adaptive O-OFDM symbol decomposition serial transmission system[J]. Acta Electronica Sinica, 2023, 51(7): 1741–1749. doi: 10.12263/DZXB.20220248.
    [23] 王国胤, 姚一豫, 于洪. 粗糙集理论与应用研究综述[J]. 计算机学报, 2009, 32(7): 1229–1246. doi: 10.3724/SP.J.1016.2009.01229.

    WANG Guoyin, YAO Yiyu, and YU Hong. A survey on rough set theory and applications[J]. Chinese Journal of Computers, 2009, 32(7): 1229–1246. doi: 10.3724/SP.J.1016.2009.01229.
    [24] DIMITROV S, SINANOVIC S, and HAAS H. Double-sided signal clipping in ACO-OFDM wireless communication systems[C]. 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011: 1–5. DOI: 10.1109/icc.2011.5962752.
    [25] 董威. 粗糙集理论及其数据挖掘应用[M]. 沈阳: 东北大学出版社, 2014.

    DONG Wei. Rough Set Theory and Data Mining Applications[M]. Shenyang: Northeastern University Press, 2014.
    [26] 官礼和. 基于粗糙集理论的不完备信息处理方法研究[J]. 重庆邮电大学学报(自然科学版), 2009, 21(4): 461–466. doi: 10.3979/j.issn.1673-825X.2009.04.003.

    GUAN Lihe. Processing incomplete information methods based on rough set[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2009, 21(4): 461–466. doi: 10.3979/j.issn.1673-825X.2009.04.003.
    [27] 王晓艳, 张楠. 改进粗糙集理论的无线传感器网络静态节点分类算法[J]. 传感技术学报, 2023, 36(8): 1310–1315. doi: 10.3969/j.issn.1004-1699.2023.08.019.

    WANG Xiaoyan and ZHANG Nan. Static node classification algorithm based on improved rough set theory in wireless sensor networks[J]. Chinese Journal of Sensors and Actuators, 2023, 36(8): 1310–1315. doi: 10.3969/j.issn.1004-1699.2023.08.019.
    [28] 贾科军, 郝莉, 余彩虹. 室内可见光通信多径信道建模及MIMO-ACO-OFDM系统性能分析[J]. 光学学报, 2016, 36(7): 0706005. doi: 10.3788/AOS201636.0706005.

    JIA Kejun, HAO Li, and YU Caihong. Modeling of multipath channel and performance analysis of MIMO-ACO-OFDM system for indoor visible light communications[J]. Acta Optica Sinica, 2016, 36(7): 0706005. doi: 10.3788/AOS201636.0706005.
    [29] 陈泉润, 张涛. 室内可见光通信系统的光源布局优化及性能分析[J]. 光学学报, 2019, 39(4): 0406003. doi: 10.3788/AOS201939.0406003.

    CHEN Quanrun and ZHANG Tao. Light source layout optimization and performance analysis of indoor visible light communication system[J]. Acta Optica Sinica, 2019, 39(4): 0406003. doi: 10.3788/AOS201939.0406003.
    [30] 李宝龙, 施建锋, 吴勤勤, 等. 可见光通信中融合VOOK和分层OFDM的高效频谱混合调制方法[J]. 电子与信息学报, 2022, 44(8): 2639–2648. doi: 10.11999/JEIT220368.

    LI Baolong, SHI Jianfeng, WU Qinqin, et al. Spectrum-efficient hybrid modulation based on VOOK and layered OFDM for visible light communications[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2639–2648. doi: 10.11999/JEIT220368.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  86
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-14
  • 修回日期:  2025-03-25
  • 网络出版日期:  2025-04-19
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回