高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度奇偶校验码正则化神经网络归一化最小和译码算法

周华 周鸣 张立康

周华, 周鸣, 张立康. 低密度奇偶校验码正则化神经网络归一化最小和译码算法[J]. 电子与信息学报, 2025, 47(5): 1486-1493. doi: 10.11999/JEIT240860
引用本文: 周华, 周鸣, 张立康. 低密度奇偶校验码正则化神经网络归一化最小和译码算法[J]. 电子与信息学报, 2025, 47(5): 1486-1493. doi: 10.11999/JEIT240860
ZHOU Hua, ZHOU Ming, ZHANG Likang. Regularized Neural Network-Based Normalized Min-Sum Decoding for LDPC Codes[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1486-1493. doi: 10.11999/JEIT240860
Citation: ZHOU Hua, ZHOU Ming, ZHANG Likang. Regularized Neural Network-Based Normalized Min-Sum Decoding for LDPC Codes[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1486-1493. doi: 10.11999/JEIT240860

低密度奇偶校验码正则化神经网络归一化最小和译码算法

doi: 10.11999/JEIT240860
基金项目: 国家自然科学基金(62001238,62201271)
详细信息
    作者简介:

    周华:男,副教授,研究方向为信息论与编码、无线通信等

    周鸣:男,硕士生,研究方向为现代信道编码技术

    张立康:男,硕士生,研究方向为现代信道编码技术

    通讯作者:

    周华 hzhou@nuist.edu.cn

  • 中图分类号: TN911.22

Regularized Neural Network-Based Normalized Min-Sum Decoding for LDPC Codes

Funds: The National Natural Science Foundation of China (62001238, 62201271)
  • 摘要: 低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS, VC-SNNMS和CV-SNNMS译码时因高复杂度导致的过拟合问题,引入正则化(Regularization)优化了神经网络中边信息的权重训练,抑制了基于神经网络译码的过拟合问题,分别得到 RNNMS, RVC-SNNMS和RCV-SNNMS算法。仿真结果表明:采用共享权重可以减轻神经网络训练负担,降低LDPC 码基于神经网络译码的误比特率(BER);正则化能有效缓解过拟合现象提升神经网络的译码性能。针对码长为576,码率为0.75的LDPC码,当误码率BER=10–6时,RNNMS, RVC-SNNMS和RCV-SNNMS算法相较于NNMS, VC-SNNMS和CV-SNNMS算法分别得到了0.18 dB, 0.22 dB和0.27 dB的信噪比(SNR)增益,其中最佳的RVC-SNNMS算法相较于BP算法、NNMS算法和SNNMS算法,分别获得了0.55 dB, 0.51 dB和0.22 dB的信噪比增益。
  • 图  1  4种权重共享方式对应的神经网络译码算法

    图  2  正则化神经网络归一化最小和算法译码流程

    图  3  码长576LDPC码的各译码算法的BER性能比较

    图  4  NNMS算法、SNNMS算法和RVC-SNNMS算法的不同迭代次数对比

    图  5  码长1056LDPC码的各译码算法的BER性能比较

    图  6  不同正则化参数下的误码率对比

    表  1  复杂度分析

    序号 NNMS SNNMS CV-SNNMS VC-SNNMS
    CMP $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I $ $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I $ $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I $ $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I $
    XOR $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I $ $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I $ $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I $ $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I $
    ADD $ \displaystyle\sum\limits _{v=1}^{N}\left({b}_{v}\left({b}_{v}-1\right)+1\right)I $ $ \displaystyle\sum\limits _{v=1}^{N}\left({b}_{v}\left({b}_{v}-1\right)+1\right)I $ $ \displaystyle\sum\limits _{v=1}^{N}\left({b}_{v}\left({b}_{v}-1\right)+1\right)I $ $ \displaystyle\sum\limits _{v=1}^{N}\left({b}_{v}\left({b}_{v}-1\right)+1\right)I $
    MUL $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I+\displaystyle\sum\limits _{v=1}^{N}{b}_{v}\left({b}_{v}-2\right)I $ $ 2I $ $ \displaystyle\sum\limits _{u=1}^{N-k}{a}_{u}\left({a}_{u}-2\right)I+I $ $ I+\displaystyle\sum\limits _{v=1}^{N}{b}_{v}\left({b}_{v}-2\right)I $
    下载: 导出CSV

    表  2  训练数据集参数设置

    参数
    学习率$ \eta $ 0.001
    优化器 Adam
    批处理大小 100
    SNR步长(dB) 0.5
    每轮训练每个SNR码字数 20
    每个信噪比训练数据量 2 000
    正则化方法 L2
    正则化参数$ \lambda $ 0.05
    下载: 导出CSV
  • [1] MACKAY D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999, 45(2): 399–431. doi: 10.1109/18.748992.
    [2] FOSSORIER M P C, MIHALJEVIC M, and IMAI H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J]. IEEE Transactions on Communications, 1999, 47(5): 673–680. doi: 10.1109/26.768759.
    [3] CHEN Jinghu, DHOLAKIA A, ELEFTHERIOU E, et al. Reduced-complexity decoding of LDPC codes[J]. IEEE Transactions on Communications, 2005, 53(8): 1288–1299. doi: 10.1109/TCOMM.2005.852852.
    [4] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484–489. doi: 10.1038/nature16961.
    [5] HINTON G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82–97. doi: 10.1109/MSP.2012.2205597.
    [6] TERA S P, CHINTHAGINJALA R, NATHA P, et al. CNN-based approach for enhancing 5G LDPC code decoding performance[J]. IEEE Access, 2024, 12: 89873–89886. doi: 10.1109/ACCESS.2024.3420106.
    [7] 郝崇正, 党小宇, 李赛, 等. 基于稀疏自编码器的混合信号符号检测研究[J]. 电子与信息学报, 2022, 44(12): 4204–4210. doi: 10.11999/JEIT211074.

    HAO Chongzheng, DANG Xiaoyu, LI Sai, et al. Research on symbol detection of mixed signals based on sparse AutoEncoder detector[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4204–4210. doi: 10.11999/JEIT211074.
    [8] LIANG Fei, SHEN Cong, and WU Feng. An iterative BP-CNN architecture for channel decoding[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 144–159. doi: 10.1109/JSTSP.2018.2794062.
    [9] NACHMANI E, BE'ERY Y, and BURSHTEIN D. Learning to decode linear codes using deep learning[C]. 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2016: 341–346. doi: 10.1109/ALLERTON.2016.7852251.
    [10] MA Liangsi, LIU Bei, SU Xibin, et al. A model-driven quasi-ResNet belief propagation neural network decoder for LDPC codes[C]. 2023 IEEE Symposium on Computers and Communications (ISCC), Gammarth, Tunisia, 2023: 643–648. doi: 10.1109/ISCC58397.2023.10217911.
    [11] LI Ying, ZHANG Baoye, TAN Bin, et al. A neural network-based compressive LDPC decoder design over correlated noise channel[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(4): 1317–1326. doi: 10.1109/TCCN.2024.3364234.
    [12] NACHMANI E, MARCIANO E, LUGOSCH L, et al. Deep learning methods for improved decoding of linear codes[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 119–131. doi: 10.1109/JSTSP.2017.2788405.
    [13] 贺文武, 夏巧桥, 邹炼. 基于变量节点更新的交替方向乘子法LDPC惩罚译码算法[J]. 电子与信息学报, 2018, 40(1): 95–101. doi: 10.11999/JEIT170358.

    HE Wenwu, XIA Qiaoqiao, and ZOU Lian. Alternating direction method of multipliers LDPC penalized decoding algorithm based on variable node update[J]. Journal of Electronics & Information Technology, 2018, 40(1): 95–101. doi: 10.11999/JEIT170358.
    [14] KIM T and PARK J S. Neural self-corrected min-sum decoder for NR LDPC codes[J]. IEEE Communications Letters, 2024, 28(7): 1504–1508. doi: 10.1109/LCOMM.2024.3404110.
    [15] DAI Jincheng, TAN Kailin, SI Zhongwei, et al. Learning to decode protograph LDPC codes[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 1983–1999. doi: 10.1109/JSAC.2021.3078488.
    [16] WANG Qing, LIU Qing, WANG Shunfu, et al. Normalized min-sum neural network for LDPC decoding[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(1): 70–81. doi: 10.1109/TCCN.2022.3212438.
    [17] LIANG Yuanhui, LAM C T, and NG B K. A low-complexity neural normalized min-sum LDPC decoding algorithm using tensor-train decomposition[J]. IEEE Communications Letters, 2022, 26(12): 2914–2918. doi: 10.1109/LCOMM.2022.3207506.
    [18] YU Haochen, ZHAO Mingmin, LEI Ming, et al. Neural adjusted min-sum decoding for LDPC codes[C]. 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, China, 2023: 1–5. doi: 10.1109/VTC2023-Fall60731.2023.10333372.
    [19] LIANG Shuo, LIU Xingcheng, and ZHANG Lin. Low complexity deep learning method for base graph of protograph LDPC decoding[C]. 2023 9th International Conference on Computer and Communications (ICCC), Chengdu, China, 2023: 730–736. doi: 10.1109/ICCC59590.2023.10507610.
    [20] BADOLA A, NAIR V P, and LAL R P. An analysis of regularization methods in deep neural networks[C]. 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 2020: 1–6. doi: 10.1109/INDICON49873.2020.9342192.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  46
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-14
  • 修回日期:  2025-03-28
  • 网络出版日期:  2025-04-23
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回