高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向低空智联网的多维信息统一表征技术综述

董超 崔灿 贾子晔 朱奕安 张磊 吴启晖

董超, 崔灿, 贾子晔, 朱奕安, 张磊, 吴启晖. 面向低空智联网的多维信息统一表征技术综述[J]. 电子与信息学报. doi: 10.11999/JEIT240835
引用本文: 董超, 崔灿, 贾子晔, 朱奕安, 张磊, 吴启晖. 面向低空智联网的多维信息统一表征技术综述[J]. 电子与信息学报. doi: 10.11999/JEIT240835
DONG Chao, CUI Can, JIA Ziye, ZHU Yian, ZHANG Lei, WU Qihui. Survey of Unified Representation Technology of Multi-dimensional Information for Low Altitude Intelligent Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240835
Citation: DONG Chao, CUI Can, JIA Ziye, ZHU Yian, ZHANG Lei, WU Qihui. Survey of Unified Representation Technology of Multi-dimensional Information for Low Altitude Intelligent Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240835

面向低空智联网的多维信息统一表征技术综述

doi: 10.11999/JEIT240835
基金项目: 国家重点研发计划(2022YFB3104502),国家自然科学基金(62301251),航空科学基金(2023Z071052007)
详细信息
    作者简介:

    董超:男,教授,博士生导师,研究方向为电磁频谱空间认知管控、无人机通信与组网、低空智联网、空天地一体智联网、边缘网络智能、无人机协同智能应用、大规模无线网络跨域仿真等

    崔灿:女,硕士生,研究方向为低空智联网等

    贾子晔:女,副教授,硕士生导师,研究方向为空天地一体化网络、低空智联网、卫星网络等

    朱奕安:男,硕士生,研究方向为低空智联网

    张磊:男,教授,硕士生导师,研究方向为嵌入式系统与边缘计算、人工智能与无线自组网

    吴启晖:男,教授,博士生导师,研究方向为认知科学与应用、认知信息论、天地一体化智能信息网络、电磁空间频谱认知智能管控、无人机认知集群

    通讯作者:

    贾子晔 jzy@nuaa.edu.cn

  • 中图分类号: TN92

Survey of Unified Representation Technology of Multi-dimensional Information for Low Altitude Intelligent Network

Funds: The National Key R&D Program of China (2022YFB3104502), The National Natural Science Foundation of China (62301251), The Aeronautical Science Foundation of China (2023Z071052007)
  • 摘要: 作为新质生产力的低空智联网(LAIN),通过构建多种应用场景下的3维网络体系,可协助实现泛在覆盖和万物互联的美好愿景。然而,随着LAIN的快速发展,在数据采集和利用过程中,分布式飞行器和地面设备在运营过程中所产生的数据来源广泛、格式各异,但由于尚未形成对数据的统一表征标准,极大地限制了LAIN中信息共享和有效利用。因此,该文首先总结了当前国内外相关研究现状,分析了LAIN下潜在的异构数据类型,指明其主要特征和应用场景;然后,设计了LAIN数据集成与融合的示范平台;其次,剖析了实现LAIN下多维异构信息统一表征所面临的挑战;进而,基于数据融合技术、时空栅格化技术、多模态协同推理以及知识图谱,提出潜在的融合与集成表征方法,构建统一的知识表征模型框架,以期实现不同信息源数据的语义对齐和集成;最后,对所述内容进行总结,并展望了未来的研究方向,旨在为LAIN的进一步发展提供理论基础和技术支持,推动LAIN信息资源的高效利用和智能化发展。
  • 图  1  低空信息融合与监控系统

    图  2  低空智联网异构数据统一表征技术路线

    图  3  低空智联网多维数据信息特征级融合

    图  4  低空智联网多模态数据融合表征技术

    图  5  低空飞行器知识图谱构建示意图

    表  1  低空智联网多维数据融合方法

    融合方法 主要特点 优缺点 应用场景
    数据级融合 整合原始数据,保留完整信息,存储、处理开销高 信息完整性高,同时对数据质量要求高 数据量大且多源数据具有高度互补性,需要直接整合原始数据的场景
    特征级融合 整合数据主要特征,可提高数据表示和分析效果,实时性强 鲁棒性更强,能综合多源数据特征,但特征提取算法依赖度高,可能导致信息损失 智能交通、农业监测、公共安全等需要从多源数据中提取和综合多源数据
    特征的场景
    决策级融合 不同数据源的数据或特征进行分析和决策后,整合独立决策结果,可有效提高决策准确性和可靠性,灵活性高,鲁棒性强,抗干扰能力强 灵活性高,鲁棒性强,但融合算法
    相对复杂
    UAV导航、目标识别、灾害预警等需进行独立决策以提高决策准确性和
    可靠性的场景
    下载: 导出CSV
  • [1] 吴启晖, 董超, 贾子晔, 等. 低空智联网组网与控制理论方法[J]. 航空学报, 2024, 45(3): 028809. doi: 10.7527/S1000-6893.2023.28809.

    WU Qihui, DONG Chao, JIA Ziye, et al. Networking and control mechanism for low-altitude intelligent networks[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028809. doi: 10.7527/S1000-6893.2023.28809.
    [2] 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 024638. doi: 10.7527/S1000-6893.2020.24638.

    ZHANG Honghai, ZOU Yiyuan, ZHANG Qiqian, et al. Future urban air mobility management: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024639. doi: 10.7527/S1000-6893.2020.24638.
    [3] 廖小罕, 徐晨晨, 叶虎平. 低空经济发展与低空路网基础设施建设的效益和挑战[J]. 中国科学院院刊, 2024, 39(11): 1966–1981. doi: 10.16418/j.issn.1000-3045.20240614002.

    LIAO Xiaohan, XU Chenchen, YE Huping. Benefits and challenges of constructing low-altitude air route network infrastructure for developing low-altitude economy[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(11): 1966–1981. doi: 10.16418/j.issn.1000-3045.20240614002.
    [4] NEW W K and LEOW C Y. Unmanned Aerial Vehicle (UAV) in future communication system[C]. The 2021 26th IEEE Asia-Pacific Conference on Communications (APCC), Kuala Lumpur, Malaysia, 2021: 217–222. doi: 10.1109/APCC49754.2021.9609875.
    [5] 樊邦奎, 李云, 张瑞雨. 浅析低空智联网与无人机产业应用[J]. 地理科学进展, 2021, 40(9): 1441–1450. doi: 10.18306/dlkxjz.2021.09.001.

    FAN Bangkui, LI Yun, and ZHANG Ruiyu. Initial analysis of low-altitude internet of intelligences (IOI) and the applications of unmanned aerial vehicle industry[J]. Progress in Geography, 2021, 40(9): 1441–1450. doi: 10.18306/dlkxjz.2021.09.001.
    [6] RAY P P. A review on 6G for space-air-ground integrated network: Key enablers, open challenges, and future direction[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(9): 6949–6976. doi: 10.1016/j.jksuci.2021.08.014.
    [7] 史殿习, 洪臣, 康颖, 等. 面向多无人机协同飞行控制的云系统架构[J]. 计算机学报, 2020, 43(12): 2352–2371. doi: 10.11897/SP.J.1016.2020.02352.

    SHI Dianxi, HONG Chen, KANG Ying, et al. Cloud-based control system architecture for multi-UAVs Cooperative flight[J]. Chinese Journal of Computers, 2020, 43(12): 2352–2371. doi: 10.11897/SP.J.1016.2020.02352.
    [8] 刘畅行, 陈思衡, 杨峰. 基于多模态大模型的智能无人机系统: 总结与展望[J]. 无线电工程, 2024, 54(12): 2923–2932. doi: 10.3969/j.issn.1003-3106.2024.12.020.

    LIU Changxing, CHEN Siheng, and YANG Feng. Review of intelligent UAV systems based on large multimodal models[J]. Radio Engineering, 2024, 54(12): 2923–2932. doi: 10.3969/j.issn.1003-3106.2024.12.020.
    [9] 卢锟, 李荣鹏, 赵志峰, 等. 基于统一语义表征的多用户异构语义网络[J]. 移动通信, 2023, 47(4): 37–44. doi: 10.3969/j.issn.1006-1010.20230305-0001.

    LU Kun, LI Rongpeng, ZHAO Zhifeng, et al. Multi-user heterogeneous semantic network based on unified semantic representation[J]. Mobile Communications, 2023, 47(4): 37–44. doi: 10.3969/j.issn.1006-1010.20230305-0001.
    [10] 刘华峰, 陈静静, 李亮, 等. 跨模态表征与生成技术[J]. 中国图象图形学报, 2023, 28(6): 1608–1629. doi: 10.11834/jig.230035.

    LIU Huafeng, CHEN Jingjing, LI Liang, et al. Cross-modal representation learning and generation[J]. Journal of Image and Graphics, 2023, 28(6): 1608–1629. doi: 10.11834/jig.230035.
    [11] 李巧玲. 复杂场景下数字孪生多源数据融合技术研究[D]. [硕士/博士论文], 西安工业大学, 2024. doi: 10.27391/d.cnki.gxagu.2024.000467.

    LI Qiaoling. Research on multisource data fusion technology for digital twins in complex environments[D]. [Master/Ph. D. dissertation], Xi’an Technological University, 2024. doi: 10.27391/d.cnki.gxagu.2024.000467.
    [12] DU Hao, WANG Wei, XU Chaowen, et al. Real-time onboard 3D state estimation of an unmanned aerial vehicle in multi-environments using multi-sensor data fusion[J]. Sensors, 2020, 20(3): 919. doi: 10.3390/s20030919.
    [13] XI Lihu, HOU Jingwei, MA Guanglin, et al. A multiscale information fusion network based on PixelShuffle integrated with YOLO for aerial remote sensing object detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 7501505. doi: 10.1109/LGRS.2024.3353304.
    [14] ALLISON J A, PTUCHA R, and LYSHEVSKI S E. Resilient communication, object classification and data fusion in unmanned aerial systems[C]. 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, USA, 2018: 779–787. doi: 10.1109/ICUAS.2018.8453309.
    [15] WENG Qian, CHEN Hao, CHEN Hongli, et al. A multisensor data fusion model for semantic segmentation in aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6511905. doi: 10.1109/LGRS.2022.3183613.
    [16] 沈锋, 丁国如, 李婕, 等. 电磁频谱多维态势压缩测绘技术研究进展[J]. 通信学报, 2023, 44(11): 25–42. doi: 10.11959/j.issn.1000-436x.2023174.

    SHEN Feng, DING Guoru, LI Jie, et al. Research progress on electromagnetic spectrum multidimensional situation compressed mapping technology[J]. Journal on Communications, 2023, 44(11): 25–42. doi: 10.11959/j.issn.1000-436x.2023174.
    [17] 董超, 经宇骞, 屈毓锛, 等. 面向低空智联网频谱认知与决策的云边端融合体系架构[J]. 通信学报, 2023, 44(11): 1–12. doi: 10.11959/j.issn.1000-436x.2023228.

    DONG Chao, JING Yuqian, QU Yuben, et al. Cloud-edge-device fusion architecture oriented to spectrum cognition and decision in low altitude intelligence network[J]. Journal on Communications, 2023, 44(11): 1–12. doi: 10.11959/j.issn.1000-436x.2023228.
    [18] SHANG Bodong, MAROJEVIC V, YI Yang, et al. Spectrum sharing for UAV communications: Spatial spectrum sensing and open issues[J]. IEEE Vehicular Technology Magazine, 2020, 15(2): 104–112. doi: 10.1109/MVT.2020.2980020.
    [19] SENKUS B, YAMAN B, AYDIN H, et al. Implementation of high performance multi-agent position feeding framework[C]. 2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 2022: 1–5. doi: 10.23919/MIKON54314.2022.9924764.
    [20] 杨鑫春, 李征航, 吴云. 北斗卫星导航系统的星座及XPL性能分析[J]. 测绘学报, 2011, 40(S1): 68–72.

    YANG Xinchun, LI Zhenghang, and WU Yun. The performance analysis of constellation and XPL for compass[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(S1): 68–72.
    [21] SAIFIZI M, MUSTAFA W A, RADZI N S M, et al. UAV based image acquisition data for 3D model application[J]. IOP Conference Series: Materials Science and Engineering, 2020, 917(1): 012074. doi: 10.1088/1757-899X/917/1/012074.
    [22] 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 028822. doi: 10.7527/S1000-6893.2023.28822.

    LUO Xudong, WU Yiquan, and CHEN Jinlin. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 028822. doi: 10.7527/S1000-6893.2023.28822.
    [23] 韩子硕, 范喜全, 付强, 等. 面向无人机视角的多源信息融合目标检测[J]. 系统工程与电子技术, 2025, 47(1): 52–61. doi: 10.12305/j.issn.1001-506X.2025.01.06.

    HAN Zishuo, FAN Xiquan, FU Qiang, et al. Target detection based on multi-source information fusion from the perspective of drones[J]. Systems Engineering and Electronics, 2025, 47(1): 52–61. doi: 10.12305/j.issn.1001-506X.2025.01.06.
    [24] LIAO Yiyang, JIA Ziye, DONG Chao, et al. Interference analysis for coexistence of UAVs and civil aircrafts based on automatic dependent surveillance-broadcast[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15911–15915. doi: 10.1109/TVT.2024.3414502.
    [25] LIAO Yiyang, ZHANG Lei, JIA Ziye, et al. Impact of UAVs equipped with ADS-B on the civil aviation monitoring system[C]. 2023 IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 2023: 1–6. doi: 10.1109/ICCC57788.2023.10233390.
    [26] ZHANG Yifan, JIA Ziye, DONG Chao, et al. Recurrent LSTM-based UAV trajectory prediction with ADS-B information[C]. GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 1–6. doi: 10.1109/GLOBECOM48099.2022.10000919.
    [27] DONG Chao, ZHANG Yifan, JIA Ziye, et al. Three-dimension collision-free trajectory planning of UAVs based on ADS-B information in low-altitude urban airspace[J]. Chinese Journal of Aeronautics, 2025, 38(2): 103170. doi: 10.1016/j.cja.2024.08.001.
    [28] RUSENO N, LIN Chungyan, and CHANG S C. UAS traffic management communications: The legacy of ADS-B, new establishment of remote ID, or leverage of ADS-B-like systems?[J]. Drones, 2022, 6(3): 57. doi: 10.3390/drones6030057.
    [29] KHAN, S, GABA G S, BOEIRA F, et al. Formal verification and security assessment of the drone remote identification protocol[C]. 2024 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 2024: 1–8. doi: 10.1109/UVS59630.2024.10467159.
    [30] MURRELL E, WALKER Z, KING E, et al. Remote ID and vehicle-to-vehicle communications for unmanned aircraft system traffic management[C]. The 15th International Workshop on Communication Technologies for Vehicles, Bordeaux, France, 2020: 194–202. doi: 10.1007/978-3-030-66030-7_17.
    [31] ZHANG Lili, XIE Yuxiang, XIDAO Luan, et al. Multi-source heterogeneous data fusion[C]. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 2018: 47–51. doi: 10.1109/ICAIBD.2018.8396165.
    [32] 陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述[J]. 现代雷达, 2020, 42(6): 15–29. doi: 10.16592/j.cnki.1004-7859.2020.06.003.

    CHEN Weishi, HUANG Yifeng, and LU Xianfeng. Survey on application of multi-sensor fusion in UAV detection technology[J]. Modern Radar, 2020, 42(6): 15–29. doi: 10.16592/j.cnki.1004-7859.2020.06.003.
    [33] CHEN Kaiwen and KOUDAS N. Unstructured data fusion for schema and data extraction[J]. Proceedings of the ACM on Management of Data, 2024, 2(3): 181. doi: 10.1145/3654984.
    [34] CAI Yuxiang. Research on data fusion method of multi-source complex system[J]. Journal of Web Engineering, 2021, 20(5): 1553–1572. doi: 10.13052/jwe1540-9589.20510.
    [35] ZHU Yian, JIA Ziye, WU Qihui, et al. UAV trajectory tracking via RNN-enhanced IMM-KF with ADS-B data[C]. 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10570914.
    [36] HUANG Fanghui, HE Yixin, DENG Xinyang, et al. A novel discount-weighted average fusion method based on reinforcement learning for conflicting data[J]. IEEE Systems Journal, 2023, 17(3): 4748–4751. doi: 10.1109/JSYST.2022.3228015.
    [37] LI Xianfeng and XU Sen. Multi-sensor complex network data fusion under the condition of uncertainty of coupling occurrence probability[J]. IEEE Sensors Journal, 2021, 21(22): 24933–24940. doi: 10.1109/JSEN.2021.3061437.
    [38] WANG Ze. Knowledge graph service system based on data fusion technology[C]. 2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC), Dharwad, India, 2023: 1–6. doi: 10.1109/ICAISC58445.2023.10200320.
    [39] 谢华, 苏方正, 尹嘉男, 等. 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报, 2023, 44(18): 328226. doi: 10.7527/S1000-6893.2023.28226.

    XIE Hua, SU Fangzheng, YIN Jianan, et al. Network modeling and refined management of UAV flight conflicts in complex low altitude airspace[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328226. doi: 10.7527/S1000-6893.2023.28226.
    [40] HONG Danfeng, CHANUSSOT J, and ZHU Xiaoxiang. An overview of multimodal remote sensing data fusion: From image to feature, from shallow to deep[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 1245–1248. doi: 10.1109/IGARSS47720.2021.9554255.
    [41] CHEN Donghua and ZHANG Runtong. Building multimodal knowledge bases with multimodal computational sequences and generative adversarial networks[J]. IEEE Transactions on Multimedia, 2024, 26: 2027–2040. doi: 10.1109/TMM.2023.3291503.
    [42] QIANG Ma, TAO Xu, and GANG Daiyu. Research and implementation of archives knowledge base for multi-source heterogeneous data fusion[C]. 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC), Qingdao, China, 2022: 462–465. doi: 10.1109/ICFTIC57696.2022.10075283.
    [43] ZENKERT J, HOLLAND A, and FATHI M. Discovering contextual knowledge with associated information in dimensional structured knowledge bases[C]. Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016: 001923–001928. doi: 10.1109/SMC.2016.7844520.
    [44] JI Shaoxiong, PAN Shirui, CAMBRIA Erik, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494–514. doi: 10.1109/TNNLS.2021.3070843.
    [45] LÓPEZ-CIFUENTES A, ESCUDERO-VIÑOLO M, BESCÓS J, et al. Semantic-aware scene recognition[J]. Pattern Recognition, 2020, 102: 107256. doi: 10.1016/j.patcog.2020.107256.
    [46] 陈囿任, 李勇, 温明, 等. 多模态知识图谱融合技术研究综述[J]. 计算机工程与应用, 2024, 60(13): 36–50. doi: 10.3778/j.issn.1002-8331.2309-0481.

    CHEN Youren, LI Yong, WEN Ming, et al. Research and comprehensive review on multi-modal knowledge graph fusion techniques[J]. Computer Engineering and Applications, 2024, 60(13): 36–50. doi: 10.3778/j.issn.1002-8331.2309-0481.
    [47] XIAO Zhu, CHEN Yanxun, JIANG Hongbo, et al. Resource management in UAV-assisted MEC: State-of-the-art and open challenges[J]. Wireless Networks, 2022, 28(7): 3305–3322. doi: 10.1007/s11276-022-03051-4.
    [48] LIAN, Yongxing, QIAN Liang, DING Lianghui, et al. Semantic fusion infrastructure for unmanned vehicle system based on cooperative 5G MEC[C]. 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 2020: 202–207. doi: 10.1109/ICCC49849.2020.9238949.
    [49] YU Yue, WU Jun, TANG Xiao, et al. Distributed downloading strategy for multi-source data fusion in edge-enabled vehicular network[C]. 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 2019: 1–6. doi: 10.1109/ICCChina.2019.8855944.
    [50] JING Yi, WANG Jingjing, JIANG Chunxiao, et al. Satellite MEC with federated learning: Architectures, technologies and challenges[J]. IEEE Network, 2022, 36(5): 106–112. doi: 10.1109/MNET.001.2200202.
    [51] MITOLA J. Cognitive radio[D]. [Ph. D. dissertation], Royal Institute of Technology, 2000.
    [52] WAN Fanqi, HUANG Xinting, CAI Deng, et al. Knowledge fusion of large language models[C]. The Twelfth International Conference on Learning Representations, Vienna, Austria, 2024.
    [53] PAN Shirui, LUO Linhao, WANG Yufei, et al. Unifying large language models and knowledge graphs: A roadmap[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3580–3599. doi: 10.1109/TKDE.2024.3352100.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  41
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-03-20
  • 网络出版日期:  2025-04-01

目录

    /

    返回文章
    返回