高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速网络中优先级敏感的每流大小测量

高国举 周少龙 孙玉娥 黄河

高国举, 周少龙, 孙玉娥, 黄河. 高速网络中优先级敏感的每流大小测量[J]. 电子与信息学报, 2025, 47(6): 1885-1895. doi: 10.11999/JEIT240834
引用本文: 高国举, 周少龙, 孙玉娥, 黄河. 高速网络中优先级敏感的每流大小测量[J]. 电子与信息学报, 2025, 47(6): 1885-1895. doi: 10.11999/JEIT240834
GAO Guoju, ZHOU Shaolong, SUN Yu-E, HUANG He. Priority-aware Per-flow Size Measurement in High-speed Networks[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1885-1895. doi: 10.11999/JEIT240834
Citation: GAO Guoju, ZHOU Shaolong, SUN Yu-E, HUANG He. Priority-aware Per-flow Size Measurement in High-speed Networks[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1885-1895. doi: 10.11999/JEIT240834

高速网络中优先级敏感的每流大小测量

doi: 10.11999/JEIT240834 cstr: 32379.14.JEIT240834
基金项目: 国家自然科学基金(62332013, 62472298),中国博士后基金(2023M732537)
详细信息
    作者简介:

    高国举:男,副教授,研究方向为网络流量测量、Sketch结构设计、智能感知计算等

    周少龙:男,硕士,研究方向为网络流量测量

    孙玉娥:女,教授,研究方向为交通及网络流量统计、物联网、智能交通等

    黄河:男,教授,研究方向为网络流量测量与大数据可信分析、智能物联网、信息安全与隐私保护等

    通讯作者:

    孙玉娥 sunye12@suda.edu.cn

  • 中图分类号: TP393

Priority-aware Per-flow Size Measurement in High-speed Networks

Funds: The National Natural Science Foundation of China (62332013, 62472298), China Postdoctoral Science Foundation (2023M732537)
  • 摘要: 高速网络中的流量测量在许多实际应用中起着至关重要的作用。在有限的内存资源下,Sketch能够保持良好的精度和较高的吞吐量,因此在流量测量中得到了广泛应用。然而,大多数现有的Sketch忽略了流之间的优先级差异。优先级敏感Sketch是一种新兴的Sketch,旨在为不同优先级的流量提供不同的测量精度。目前已有的优先级敏感Sketch很难在处理速度与高优先级测量精度之间取得良好平衡。为此,该文提出EssentialKeeper算法,该算法结合优先级敏感哈希与布谷鸟哈希的优势。优先级敏感哈希通过差异化处理不同优先级的流,确保大量低优先级流能够得到快速处理;布谷鸟哈希则最大限度地将高优先级流信息记录在高优先级部分,从而在保持高优先级流的高测量精度的同时,维持较高的吞吐量。在真实数据集上进行了大量的实验,实验结果表明,与最先进的优先级敏感Sketch相比,EssentialKeeper在高优先级流上的准确率平均提高58.5%,F1分数平均提高13.3%,同时可保证较高的吞吐量。
  • 图  1  Essentialkeeper结构图

    图  2  Essentialkeeper处理流过程的示例

    图  3  参数调节实验图

    图  4  调节参数n实验图

    图  5  Zipf分布偏度参数调节实验图

    图  6  采用随机优先级分配策略(Stack Overflow数据集)

    图  7  采用随机优先级分配策略(CAIDA2019数据集)

    图  8  基于流大小分配优先级策略(Stack Overflow数据集)

    图  9  基于大小分配优先级策略(CAIDA 2019数据集)

    图  10  吞吐量实验图

    表  1  相关算法性能对比表

    Sketch 优先级敏感性 可逆性 空间高效性 哈希次数
    CM × × × d
    CU × × × d
    CS × × × 2d
    Elastic × 1~1+d
    PA × pp+d
    MC 1~L+d
    Cuckoo 1~2K+d
    EK (Ours) 1~p·K+d
    下载: 导出CSV

    1  EssentialKeeper插入算法

     输入:流标签为f,优先级为p的数据包
     输出:无输出
     初始化:
     所有数组置为空,计数器置为0;
     pmin ← ∞; // 所有候选桶中流的最小优先级
     idxmin ← -1; // 所有候选桶中优先级最小的流所在桶的索引
     1. for i = 0 to gen(p) do:
     2.  idx = hi(f) % m;
     3.  if BucketArray[idx]已存储流f:
     4.   BucketArray[idx][pos].cnt++;
     5.   return;
     6.  else if BucketArray[idx] 有空余单元格:
     7.   将(f, p, 1)插入BucketArray[idx]中;
     8.   return;
     9.  else if BucketArray[idx][0].p < pmin:
     10.   pmin = BucketArray[idx][0].p;
     11.   idxmin = idx;
     12. if p > pmin :
     13. temp = BucketArray[idxmin][0];
     14. BucketArray[idxmin][0] → (f, p, 1);
     15. 将BucketArray[idxmin]中的单元格按优先级排序;
     16.   kickout(temp.f, temp.p, temp.cnt, 0);
     17. else:
      当前插入数据包的优先级小于候选桶中的任意一条流,故将(f, 1)插入低优先级部分;
    下载: 导出CSV

    2  kickout算法

     输入:流标签f,优先级p,计数器值cnt,踢出次数kickTimes
     输出:无输出
     1. /* 踢出次数达到最大踢出次数maxKickTimes,则终止递归踢
     出过程 */
     2. if kickTimes == maxKickTimes:
     3.  将(f, cnt)插入低优先级部分;
     4.  return;
     5. for i = 0 to gen(p) do:
     6.  idx = hi(f) % m;
     7.  if BucketArray[idx]有空余单元格:
     8.   将(f,p,cnt)插入BucketArray[idx]中;
     9.   return;
     10. else if BucketArray[idx][0].p < pmin:11. pmin =
        BucketArray[idx][0].p;
     12.   idxmin = idx;
     13. if p <= pmin:
     14. 将(f, cnt)插入低优先级部分;
     15. else:
     16. temp = BucketArray[idxmin][0];
     17. BucketArray[idxmin][0] → (f, p, cnt);
     18. 将BucketArray[idxmin]中的单元格按优先级排序;
     19. kickout(temp.f, temp.p, temp.cnt, kickTimes + 1);
    下载: 导出CSV

    3  低优先级部分插入算法

     输入:流标签f,流大小c
     输出:无输出
     1. for i = 0 to d do:
     2.  j = hi(f) % w;
     3.  Gi(f) = 1 – 2 × (gi(f) % 2);
     4.  CS[i][j] ← CS[i][j] + Gi(f) × c;
    下载: 导出CSV

    4  EssentialKeeper查询算法

     输入:流标签f,优先级p
     输出:流f的流大小估计值
     1. /* 查询高优先级部分中是否存储流f */
     2. for i = 0 to gen(p) do:
     3.  idx = hi(f) % m;
     4.  if BucketArray[idx]已存储流f:
     5.   return BucketArray[idx][pos].cnt;
     6. /* 高优先级部分中没有存储流f,则在低优先级部分查询 */
     7. for i = 0 to d do:
     8.  j = hi(f) % w;
     9.  Gi(f) = 1 – 2 × (gi(f) % 2);
     10. $\varGamma_i $ ← Gi(f) × CS[i][j];
     11. return max{0,median({$\varGamma_i $ |0≤id})};
    下载: 导出CSV
  • [1] CISCO. Cisco annual internet report (2018–2023) white paper[EB/OL]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html, 2020.
    [2] ZHAO Yikai, ZHOU Wei, HAN Wenchen, et al. Achieving top-K K-fairness for finding global top-K K frequent items[J]. IEEE Transactions on Knowledge and Data Engineering, 2025, 37(4): 1508–1526. doi: 10.1109/TKDE.2024.3523033.
    [3] LI Yuanpeng, WANG Feiyu, YU Xiang, et al. LadderFilter: Filtering infrequent items with small memory and time overhead[J]. Proceedings of the ACM on Management of Data, 2023, 1(1): 10. doi: 10.1145/3588690.
    [4] YANG Tong, JIANG Jie, LIU Peng, et al. Elastic sketch: Adaptive and fast network-wide measurements[C]. The 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 2018: 561–575. doi: 10.1145/3230543.3230544.
    [5] YANG Tong, ZHANG Haowei, LI Jinyang, et al. HeavyKeeper: An accurate algorithm for finding top-k elephant flows[J]. IEEE/ACM Transactions on Networking, 2019, 27(5): 1845–1858. doi: 10.1109/TNET.2019.2933868.
    [6] CHENG Shiyu, YANG Dongsheng, YANG Tong, et al. LTC: A fast algorithm to accurately find significant items in data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4342–4356. doi: 10.1109/TKDE.2020.3038911.
    [7] DU Yang, HUANG He, SUN Y E, et al. Self-adaptive sampling based per-flow traffic measurement[J]. IEEE/ACM Transactions on Networking, 2023, 31(3): 1010–1025. doi: 10.1109/TNET.2022.3212066.
    [8] ZHANG Yinda, LI Jinyang, LEI Yutian, et al. On-off sketch: A fast and accurate sketch on persistence[J]. Proceedings of the VLDB Endowment, 2020, 14(2): 128–140. doi: 10.14778/3425879.3425884.
    [9] WANG Haibo, MELISSOURGOS D, MA Chaoyi, et al. Real-time spread burst detection in data streaming[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2023, 7(2): 35. doi: 10.1145/3589979.
    [10] LIN K C J and LAI Weilun. MC-sketch: Enabling heterogeneous network monitoring resolutions with multi-class sketch[C]. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, United Kingdom, 2022: 220–229. doi: 10.1109/INFOCOM48880.2022.9796955.
    [11] YAN Yibo, CHEN Cheng, LIN Huiping, et al. Priority-aware per-flow measurement using cuckoo Sketch[C]. 2020 IFIP Networking Conference (Networking), Paris, France, 2020: 622–624.
    [12] LI Sitan, HUANG Jiawei, ZHANG Wenlu, et al. PA-sketch: A fast and accurate sketch for differentiated flow estimation[C]. 2023 IEEE 31st International Conference on Network Protocols (ICNP), Reykjavik, Iceland, 2023: 1–11. doi: 10.1109/ICNP59255.2023.10355581.
    [13] MINTON G T and PRICE E. Improved concentration bounds for count-sketch[C]. The Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Portland, Oregon, 2014: 669–686. doi: 10.5555/2634074.2634125.
    [14] TING D. Count-min: Optimal estimation and tight error bounds using empirical error distributions[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 2319–2328. doi: 10.1145/3219819.3219975.
    [15] ESTAN C and VARGHESE G. New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice[J]. ACM Transactions on Computer Systems, 2003, 21(3): 270–313. doi: 10.1145/859716.859719.
    [16] ZHAO Xiaolei, WEN Mei, TANG Minjin, et al. HybridSketch: A memory-centric precise approach for flow measurement[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–7. doi: 10.1109/ICC40277.2020.9149374.
    [17] CAIDA. Anonymized internet traces 2019[EB/OL]. https://catalog.caida.org/dataset/passive_2019_pcap, 2019.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  103
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-05-02
  • 网络出版日期:  2025-05-24
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回