高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向物联网的通感算智融合:关键技术与未来展望

王新奕 费泽松 周一青 胡杰

王新奕, 费泽松, 周一青, 胡杰. 面向物联网的通感算智融合:关键技术与未来展望[J]. 电子与信息学报, 2025, 47(4): 888-908. doi: 10.11999/JEIT240806
引用本文: 王新奕, 费泽松, 周一青, 胡杰. 面向物联网的通感算智融合:关键技术与未来展望[J]. 电子与信息学报, 2025, 47(4): 888-908. doi: 10.11999/JEIT240806
WANG Xinyi, FEI Zesong, ZHOU Yiqing, HU Jie. Integrated Sensing, Communication, Computation, and Intelligence Towards IoT: Key Technologies and Future Directions[J]. Journal of Electronics & Information Technology, 2025, 47(4): 888-908. doi: 10.11999/JEIT240806
Citation: WANG Xinyi, FEI Zesong, ZHOU Yiqing, HU Jie. Integrated Sensing, Communication, Computation, and Intelligence Towards IoT: Key Technologies and Future Directions[J]. Journal of Electronics & Information Technology, 2025, 47(4): 888-908. doi: 10.11999/JEIT240806

面向物联网的通感算智融合:关键技术与未来展望

doi: 10.11999/JEIT240806
基金项目: 国家重点研发计划(2021YFB2900200),国家自然科学基金(U20B2039, 62301032),中国博士后科学基金(2023TQ0028, 2023M730267)
详细信息
    作者简介:

    王新奕:男,副教授,博士生导师,研究方向为通信感知计算融合、无人机通信等

    费泽松:男,教授,博士生导师,研究方向为移动通信、通信感知计算融合、星地融合通信、智能通信等

    周一青:女,研究员,博士生导师,研究方向为宽带无线通信技术

    胡杰:男,教授,博士生导师,研究方向为6G中的无线通信与资源管理技术以及通信、计算与感知一体化融合技术

    通讯作者:

    费泽松 feizesong@bit.edu.cn

  • 中图分类号: TN929.5

Integrated Sensing, Communication, Computation, and Intelligence Towards IoT: Key Technologies and Future Directions

Funds: The National Key R&D Program of China (2021YFB2900200), The National Natural Science Foundation of China (U20B2039, 62301032), China Postdoctoral Science Foundation (2023TQ0028, 2023M730267)
  • 摘要: 智慧城市、智能工厂等物联网新兴业务对通信速率、感知精度、计算效率提出更高要求,算力网络的发展与通信网络内生感知与内生智能能力的挖掘为构建通信-感知-计算-智能融合的物联网奠定扎实基础。该文首先结合未来业务概述了物联网对通信、感知、计算、智能4个功能的需求;然后基于对物联网典型特征分析,阐述4项关键技术的技术原理、方法,提出通感算智一体物联网新范式,总结了相关技术的研究进展;最后探讨了技术挑战与未来研究方向。
  • 图  1  “通、感、算、智”一体化的智慧城市物联示意图

    图  2  背向散射系统硬件架构与工作流程[8]

    图  3  无源背向散射通信系统架构

    图  4  无线信能同传系统接收架构

    图  5  移动边缘计算架构示意图

    图  6  联邦学习架构和流程示意图

    图  7  通感算智一体物联网网络架构

    图  8  RIS辅助的背向散射通信与感知融合系统

    图  9  云边端协同计算辅助感知任务处理

    表  1  地理区域特征对轨迹预测模型性能影响[76]

    性能指标MIA数据集PIT数据集
    最小平均误差(m)0.8721.076
    最小终点误差(m)1.5111.960
    错误概率0.2130.286
    下载: 导出CSV
  • [1] 尹浩, 黄宇红, 韩林丛, 等. 6G通信–感知–计算融合网络的思考[J]. 中国科学: 信息科学, 2023, 53(9): 1838–1842. doi: 10.1360/SSI-2023-0135.

    YIN Hao, HUANG Yuhong, HAN Lincong, et al. Thoughts on 6G integrated communication, sensing and computing networks[J]. Scientia Sinica Informationis, 2023, 53(9): 1838–1842. doi: 10.1360/SSI-2023-0135.
    [2] 闫实, 彭木根, 王文博. 通信-感知-计算融合: 6G愿景与关键技术[J]. 北京邮电大学学报, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.

    YAN Shi, PENG Mugen, and WANG Wenbo. Integration of communication, sensing and computing: The vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.
    [3] YANG Yizhen, GONG Yi, and WU Y C. Intelligent-reflecting-surface-aided mobile edge computing with binary offloading: Energy minimization for IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(15): 12973–12983. doi: 10.1109/JIOT.2022.3173027.
    [4] WANG Shuai, WU Y C, XIA Minghua, et al. Machine intelligence at the edge with learning centric power allocation[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7293–7308. doi: 10.1109/TWC.2020.3010522.
    [5] XU Chenren, YANG Lei, and ZHANG Pengyu. Practical backscatter communication systems for battery-free internet of things: A tutorial and survey of recent research[J]. IEEE Signal Processing Magazine, 2018, 35(5): 16–27. doi: 10.1109/MSP.2018.2848361.
    [6] VASISHT D, ZHANG Guo, ABARI O, et al. In-body backscatter communication and localization[C]. The 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 2024: 132–146. doi: 10.1145/3230543.3230565.
    [7] CHEN Erhu, WU Peiran, WU Y C, et al. UGV-assisted wireless powered backscatter communications for large-scale IoT networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 3147–3161. doi: 10.1109/TWC.2021.3118787.
    [8] JIANG Tao, ZHANG Yu, MA Wenyuan, et al. Backscatter communication meets practical battery-free internet of things: A survey and outlook[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 2021–2051. doi: 10.1109/COMST.2023.3278239.
    [9] LASSER G and MECKLENBRäUKER C F. Self-interference noise limitations of RFID readers[C]. 2015 IEEE International Conference on RFID, San Diego, USA, 2015: 145–150. doi: 10.1109/RFID.2015.7113085.
    [10] KIMIONIS J, BLETSAS A, and SAHALOS J N. Increased range bistatic scatter radio[J]. IEEE Transactions on Communications, 2014, 62(3): 1091–1104. doi: 10.1109/TCOMM.2014.020314.130559.
    [11] ALABA S Y, GURBUZ A C, and BALL J E. Emerging trends in autonomous vehicle perception: Multimodal fusion for 3D object detection[J]. World Electric Vehicle Journal, 2024, 15(1): 20. doi: 10.3390/wevj15010020.
    [12] HSU C P, LI Boda, SOLANO-RIVAS B, et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(1): 8300416. doi: 10.1109/JSTQE.2020.3022948.
    [13] NAWAZ M, TANG J K T, BIBI K, et al. Robust cognitive capability in autonomous driving using sensor fusion techniques: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(5): 3228–3243. doi: 10.1109/TITS.2023.3327949.
    [14] WANG Xuehao, LI Shuai, CHEN Chenglizhao, et al. Data-level recombination and lightweight fusion scheme for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 458–471. doi: 10.1109/TIP.2020.3037470.
    [15] NOBIS F, SHAFIEI E, KARLE P, et al. Radar voxel fusion for 3D object detection[J]. Applied Sciences, 2021, 11(12): 5598. doi: 10.3390/app11125598.
    [16] BAI Xuyang, HU Zeyu, ZHU Xinge, et al. Transfusion: Robust LiDAR-camera fusion for 3D object detection with transformers[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1080–1089. doi: 10.1109/CVPR52688.2022.00116.
    [17] XU Hu, ZHANG Xiaomin, HE Ju, et al. Real-time volumetric perception for unmanned surface vehicles through fusion of radar and camera[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5015912. doi: 10.1109/TIM.2024.3381690.
    [18] JIN Yuhao, ZHU Xiaohui, YUE Yong, et al. CR-DINO: A novel camera-radar fusion 2-D object detection model based on transformer[J]. IEEE Sensors Journal, 2024, 24(7): 11080–11090. doi: 10.1109/JSEN.2024.3357775.
    [19] CHARAN G and ALKHATEEB A. User identification: A key enabler for multi-user vision-aided communications[J]. IEEE Open Journal of the Communications Society, 2024, 5: 472–488. doi: 10.1109/OJCOMS.2023.3342089.
    [20] HU Zuhui, JING Yaguang, and WU Guoqing. Decision-level fusion detection method of visible and infrared images under low light conditions[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 38. doi: 10.1186/s13634-023-01002-5.
    [21] XU Chengcheng, ZHAO Haiyan, XIE Hongbin, et al. Multisensor decision-level fusion network based on attention mechanism for object detection[J]. IEEE Sensors Journal, 2024, 24(19): 31466–31480. doi: 10.1109/JSEN.2024.3442951.
    [22] TANG Qin, LIANG Jing, and ZHU Fangqi. A comparative review on multi-modal sensors fusion based on deep learning[J]. Signal Processing, 2023, 213: 109165. doi: 10.1016/j.sigpro.2023.109165.
    [23] ZHAO Kun, MA Lingfei, MENG Yu, et al. 3D vehicle detection using multi-level fusion from point clouds and images[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15146–15154. doi: 10.1109/TITS.2021.3137392.
    [24] ABBAS N, ZHANG Yan, TAHERKORDI A, et al. Mobile edge computing: A survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450–465. doi: 10.1109/JIOT.2017.2750180.
    [25] PHAM Q V, FANG Fang, HA V N, et al. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art[J]. IEEE Access, 2020, 8: 116974–117017. doi: 10.1109/ACCESS.2020.3001277.
    [26] CHEN Min and HAO Yixue. Task offloading for mobile edge computing in software defined ultra-dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 587–597. doi: 10.1109/JSAC.2018.2815360.
    [27] CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
    [28] JIANG Hongbo, DAI Xingxia, XIAO Zhu, et al. Joint task offloading and resource allocation for energy-constrained mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(7): 4000–4015. doi: 10.1109/TMC.2022.3150432.
    [29] GUO Ming, HU Xin, CHEN Yanru, et al. Joint scheduling and offloading schemes for multiple interdependent computation tasks in mobile edge computing[J]. IEEE Internet of Things Journal, 2024, 11(4): 5718–5730. doi: 10.1109/JIOT.2023.3307769.
    [30] LOU Jiong, TANG Zhiqing, ZHANG Songli, et al. Cost-effective scheduling for dependent tasks with tight deadline constraints in mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(10): 5829–5845. doi: 10.1109/TMC.2022.3188770.
    [31] DAI Xingxia, XIAO Zhu, JIANG Hongbo, et al. Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 480–490. doi: 10.1109/TII.2022.3158974.
    [32] CHEN Chen, ZENG Yini, LI Huan, et al. A multihop task offloading decision model in MEC-enabled internet of vehicles[J]. IEEE Internet of Things Journal, 2023, 10(4): 3215–3230. doi: 10.1109/JIOT.2022.3143529.
    [33] XIA Shichao, YAO Zhixiu, LI Yun, et al. Distributed computing and networking coordination for task offloading under uncertainties[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 5280–5294. doi: 10.1109/TMC.2023.3305013.
    [34] AL-TURJMAN F, ZAHMATKESH H, and SHAHROZE R. An overview of security and privacy in smart cities’ IoT communications[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(3): e3677. doi: 10.1002/ett.3677.
    [35] ZHU Guangxu, LIU Dongzhu, DU Yuqing, et al. Toward an intelligent edge: Wireless communication meets machine learning[J]. IEEE Communications Magazine, 2020, 58(1): 19–25. doi: 10.1109/MCOM.001.1900103.
    [36] JAVEED D, SAEED M S, AHMAD I, et al. An intelligent intrusion detection system for smart consumer electronics network[J]. IEEE Transactions on Consumer Electronics, 2023, 69(4): 906–913. doi: 10.1109/TCE.2023.3277856.
    [37] WEN Jie, ZHANG Zhixia, LAN Yang, et al. A survey on federated learning: Challenges and applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513–535. doi: 10.1007/s13042-022-01647-y.
    [38] NGUYEN D C, DING Ming, PATHIRANA P N, et al. Federated learning for internet of things: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1622–1658. doi: 10.1109/COMST.2021.3075439.
    [39] IMTEAJ A, THAKKER U, WANG Shiqiang, et al. A survey on federated learning for resource-constrained IoT devices[J]. IEEE Internet of Things Journal, 2021, 9(1): 1–24. doi: 10.1109/JIOT.2021.3095077.
    [40] GHIMIRE B and RAWAT D B. Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things[J]. IEEE Internet of Things Journal, 2022, 9(11): 8229–8249. doi: 10.1109/JIOT.2022.3150363.
    [41] LI Tian, SAHU A K, ZAHEER M, et al. On the convergence of federated optimization in heterogeneous networks[EB/OL]. https://arxiv.org/abs/1812.06127v1, 2018.
    [42] LUO Bing, XIAO Wenli, WANG Shiqiang, et al. Tackling system and statistical heterogeneity for federated learning with adaptive client sampling[C]. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, United Kingdom, 2022: 1739–1748. doi: 10.1109/INFOCOM48880.2022.9796935.
    [43] LI Qinbin, WEN Zeyi, WU Zhaomin, et al. A survey on federated learning systems: Vision, hype and reality for data privacy and protection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3347–3366. doi: 10.1109/TKDE.2021.3124599.
    [44] MORIAI S. Privacy-preserving deep learning via additively homomorphic encryption[C]. 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), Kyoto, Japan, 2019: 198. doi: 10.1109/ARITH.2019.00047.
    [45] KUMAR P, GUPTA G P, and TRIPATHI R. PEFL: Deep privacy-encoding-based federated learning framework for smart agriculture[J]. IEEE Micro, 2022, 42(1): 33–40. doi: 10.1109/MM.2021.3112476.
    [46] PEI Jiaming, LI Shike, YU Zhi, et al. Federated learning encounters 6G wireless communication in the scenario of internet of things[J]. IEEE Communications Standards Magazine, 2023, 7(1): 94–100. doi: 10.1109/MCOMSTD.0005.2200044.
    [47] WANG Chengxiang, YOU Xiaohu, GAO Xiqi, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. doi: 10.1109/COMST.2023.3249835.
    [48] 李闻. 物理层安全传输关键技术研究[D]. [硕士论文], 电子科技大学, 2024. doi: 10.27005/d.cnki.gdzku.2024.002588.

    LI Wen. Research on key technologies for secure transmission at the physical layer[D]. [Master dissertation], University of Electronic Science and Technology of China, 2024. doi: 10.27005/d.cnki.gdzku.2024.002588.
    [49] TRIPI G, IACOBELLI A, RINIERI L, et al. Security and trust in the 6G era: Risks and mitigations[J]. Electronics, 2024, 13(11): 2162. doi: 10.3390/electronics13112162.
    [50] ZHANG J A, HUANG Xiaojing, GUO Y J, et al. Multibeam for joint communication and radar sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 671–685. doi: 10.1109/TVT.2018.2883796.
    [51] WU Nan, WANG Xinyi, FEI Zesong, et al. RIS-assisted integrated sensing and backscatter communications for future IoT networks[J]. IEEE Internet of Things Magazine, 2024, 7(4): 44–50. doi: 10.1109/IOTM.001.2300184.
    [52] XU Sai, DU Yanan, ZHANG Jiliang, et al. An IRS backscatter enabled integrated sensing, communication and computation system[EB/OL]. https://arxiv.org/abs/2207.10219, 2022.
    [53] XU Sai, DU Yanan, LIU Jiajia, et al. Weighted sum rate maximization in IRS-BackCom enabled downlink multi-cell MISO network[J]. IEEE Communications Letters, 2022, 26(3): 642–646. doi: 10.1109/LCOMM.2021.3140207.
    [54] WANG Xinyi, FEI Zesong, and WU Qingqing. Integrated sensing and communication for RIS-assisted backscatter systems[J]. IEEE Internet of Things Journal, 2023, 10(15): 13716–13726. doi: 10.1109/JIOT.2023.3262867.
    [55] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [56] FANG Zhuangxin, LUO Zhiyong, and WANG Xiti. An efficient CNN-RNN recognition network for complex interference signal[C]. SPIE 12720, 2022 Workshop on Electronics Communication Engineering, Xi’an, China, 2023: 127200E. doi: 10.1117/12.2667930.
    [57] LIU Qian, LUO Rui, LIANG Hairong, et al. Energy-efficient joint computation offloading and resource allocation strategy for ISAC-aided 6G V2X networks[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 413–423. doi: 10.1109/TGCN.2023.3234263.
    [58] HUANG Ning, DOU Chenglong, WU Yuan, et al. Unmanned-aerial-vehicle-aided integrated sensing and computation with mobile-edge computing[J]. IEEE Internet of Things Journal, 2023, 10(19): 16830–16844. doi: 10.1109/JIOT.2023.3270332.
    [59] HUANG Ning, DOU Chenglong, WU Yuan, et al. Energy-efficient integrated sensing and communication: A multi-access edge computing design[J]. IEEE Wireless Communications Letters, 2023, 12(12): 2053–2057. doi: 10.1109/LWC.2023.3306433.
    [60] YANG Heng, FENG Zhiyong, WEI Zhiqing, et al. Intelligent computation offloading for joint communication and sensing-based vehicular networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3600–3616. doi: 10.1109/TWC.2023.3309688.
    [61] DING Changfeng, WANG Junbo, ZHANG Hua, et al. Joint MIMO precoding and computation resource allocation for dual-function radar and communication systems with mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2085–2102. doi: 10.1109/JSAC.2022.3157389.
    [62] HUANG Ning, DOU Chenglong, WU Yuan, et al. Mobile edge computing aided integrated sensing and communication with short-packet transmissions[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 7759–7774. doi: 10.1109/TWC.2023.3344479.
    [63] QI Qiao, CHEN Xiaoming, KHALILI A, et al. Integrating sensing, computing, and communication in 6G wireless networks: Design and optimization[J]. IEEE Transactions on Communications, 2022, 70(9): 6212–6227. doi: 10.1109/TCOMM.2022.3190363.
    [64] LIU Peng, FEI Zesong, WANG Xinyi, et al. Joint beamforming and offloading design for integrated sensing, communication and computation system[EB/OL]. https://arxiv.org/abs/2401.02071, 2024.
    [65] SCIUTO G L, KOWOL P, NOWAK P, et al. Neural network developed for obstacle avoidance of the four wheeled electric vehicle[C]. 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Istanbul, Turkiye, 2023: 1–4. doi: 10.1109/ICECS58634.2023.10382857.
    [66] BHARILYA V and KUMAR N. Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions[J]. Vehicular Communications, 2024, 46: 100733. doi: 10.1016/j.vehcom.2024.100733.
    [67] PERVEJ M F, GUO Jianlin, KIM K J, et al. Mobility, communication and computation aware federated learning for internet of vehicles[C]. 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 2022: 750–757. doi: 10.1109/IV51971.2022.9827190.
    [68] NAZER B and GASTPAR M. Computation over multiple-access channels[J]. IEEE Transactions on Information Theory, 2007, 53(10): 3498–3516. doi: 10.1109/TIT.2007.904785.
    [69] WANG Zhibin, ZHAO Yapeng, ZHOU Yong, et al. Over-the-air computation for 6G: Foundations, technologies, and applications[J]. IEEE Internet of Things Journal, 2024, 11(14): 24634–24658. doi: 10.1109/JIOT.2024.3405448.
    [70] YANG Kai, JIANG Tao, SHI Yuanming, et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2022–2035. doi: 10.1109/TWC.2019.2961673.
    [71] KIM M, SWINDLEHURST A L, and PARK D. Beamforming vector design and device selection in over-the-air federated learning[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7464–7477. doi: 10.1109/TWC.2023.3251339.
    [72] MU Yujia, WEI Xizixiang, and SHEN Cong. An autoencoder-based constellation design for AirComp in wireless federated learning[C]. ICC 2024 - IEEE International Conference on Communications, Denver, USA, 2024: 5565–5570. doi: 10.1109/ICC51166.2024.10622489.
    [73] ZHENG Zijian, DENG Yansha, LIU Xiaonan, et al. Asynchronous federated learning via over-the-air computation[C]. GLOBECOM 2023 - 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 1345–1350. doi: 10.1109/GLOBECOM54140.2023.10437951.
    [74] QIAO Senyao, GAO Fei, WU Jianghang, et al. An enhanced vehicle trajectory prediction model leveraging LSTM and social-attention mechanisms[J]. IEEE Access, 2024, 12: 1718–1726. doi: 10.1109/ACCESS.2023.3345643.
    [75] ZHENG P, ZHU Yao, YULIN H, et al. Over-the-air federated learning client selection in integrated sensing, computing and communication[C]. 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, USA, 2024: 804–809. doi: 10.1109/ICCWorkshops59551.2024.10615482.
    [76] LA BRUNA G, CARLETTI C R, RUSCA R, et al. Edge-assisted federated learning in vehicular networks[C]. 2022 18th International Conference on Mobility, Sensing and Networking (MSN), Guangzhou, China, 2022: 163–170. doi: 10.1109/MSN57253.2022.00038.
    [77] CHEN Jingran, GUO Boren, XU Yang, et al. 5GS assistance for federated learning member selection in trajectory prediction scenarios[C]. 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Foshan, China, 2022: 216–220. doi: 10.1109/ICCCWorkshops55477.2022.9896691.
    [78] ZHANG Rui and HO C K. MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1989–2001. doi: 10.1109/TWC.2013.031813.120224.
    [79] CHEN Yilong, HUA Haocheng, XU Jie, et al. ISAC meets SWIPT: Multi-functional wireless systems integrating sensing, communication, and powering[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8264–8280. doi: 10.1109/TWC.2023.3348109.
    [80] ZHOU Ziqin, LI Xiaoyang, ZHU Guangxu, et al. Integrating sensing, communication, and power transfer: Multiuser beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(9): 2228–2242. doi: 10.1109/JSAC.2024.3413996.
    [81] ZENG Xiangyu, XING Lukuan, WU Youlong, et al. Beamforming design for integrated sensing and SWIPT system[C]. 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 2022: 403–408. doi: 10.1109/PIMRC54779.2022.9977463.
    [82] YANG Yue, GAO Hui, YANG Xiaoyu, et al. Joint beamforming for RIS-assisted integrated communication, sensing and power transfer systems[J]. IEEE Wireless Communications Letters, 2024, 13(2): 288–292. doi: 10.1109/LWC.2023.3327360.
    [83] ZHANG Yumeng, ADITYA S, and CLERCKX B. Multi-functional OFDM signal design for integrated sensing, communications, and power transfer[EB/OL]. https://arxiv.org/abs/2311.00104, 2023.
    [84] DONG Fuwang, LIU Fan, LU Shihang, et al. Rethinking estimation rate for wireless sensing: A rate-distortion perspective[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16876–16881. doi: 10.1109/TVT.2023.3298005.
    [85] FEI Zesong, TANG Shuntian, WANG Xinyi, et al. Revealing the trade-off in ISAC systems: The KL divergence perspective[J]. IEEE Wireless Communications Letters, 2024, 13(10): 2747–2751. doi: 10.1109/LWC.2024.3443409.
    [86] ZHANG Jiahui, FEI Zesong, WANG Xinyi, et al. Joint resource allocation and user association for multi-cell integrated sensing and communication systems[J]. EURASIP Journal on Wireless Communications and Networking, 2023, 2023(1): 64. doi: 10.1186/s13638-023-02264-1.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  235
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2025-02-20
  • 网络出版日期:  2025-03-01
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回