高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孪生网络辅助下多域特征融合的雷达有源干扰识别方法

李宁 王赞 舒高峰 张庭玮 郭拯危

李宁, 王赞, 舒高峰, 张庭玮, 郭拯危. 孪生网络辅助下多域特征融合的雷达有源干扰识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT240797
引用本文: 李宁, 王赞, 舒高峰, 张庭玮, 郭拯危. 孪生网络辅助下多域特征融合的雷达有源干扰识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT240797
LI Ning, WANG Zan, SHU Gaofeng, ZHANG Tingwei, GUO Zhengwei. Siamese Network-assisted Multi-domain Feature Fusion for Radar Active Jamming Recognition Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240797
Citation: LI Ning, WANG Zan, SHU Gaofeng, ZHANG Tingwei, GUO Zhengwei. Siamese Network-assisted Multi-domain Feature Fusion for Radar Active Jamming Recognition Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240797

孪生网络辅助下多域特征融合的雷达有源干扰识别方法

doi: 10.11999/JEIT240797
基金项目: 河南省自然科学基金(242300421170)
详细信息
    作者简介:

    李宁:男,教授,研究方向为合成孔径雷达成像与对抗

    王赞:女,硕士生,研究方向为SAR有源干扰识别

    舒高峰:男,讲师,研究方向为SAR信号处理

    张庭玮:男,硕士生,研究方向为SAR有源干扰识别

    郭拯危:女,教授,研究方向为SAR图像处理

    通讯作者:

    李宁 hedalining@henu.edu.cn

  • 中图分类号: TN957

Siamese Network-assisted Multi-domain Feature Fusion for Radar Active Jamming Recognition Method

Funds: The Natural Science Foundation of Henan (242300421170)
  • 摘要: 针对目前雷达有源干扰识别方法在低干噪比下识别精度低和训练样本难以高效获取的问题,该文提出一种孪生网络辅助下多域特征融合的雷达有源干扰识别方法。首先,为了实现低干噪比下干扰特征的有效提取,构建了一种多域特征融合子网络;具体地,结合半软阈值函数和注意力机制,提出半软阈值收缩模块,以有效提取时域特征,避免手工提取阈值的不足,同时引入多尺度卷积模块和注意力模块,以增强时频域特征提取能力。然后,为了降低识别模型对样本的依赖,设计了一种权值共享的孪生网络,通过对比样本间相似度扩大训练次数,以解决样本不足问题。最后,联合改进的加权对比度损失函数、自适应交叉熵损失函数和3元组损失函数,实现干扰特征的类内聚集、类间分离。实验结果表明,在干噪比为–6 dB且每类干扰为20个训练样本时,对10种典型有源干扰的识别率达到96.88%。
  • 图  1  10种雷达有源干扰的时域波形

    图  2  10种雷达有源干扰的时频域图像

    图  3  孪生网络辅助下多域特征融合的雷达有源干扰识别方法

    图  4  不同方法在不同JNR下的识别准确率折线图

    图  5  本文方法和对比方法的混淆矩阵实验结果

    图  6  本文方法和对比方法的深层特征降维可视化分布图

    表  1  干扰信号参数设置

    干扰类型 参数设置 取值范围
    SMSPJ 复制次数 2~6
    C&IJ 子脉冲个数
    时隙个数
    2~4
    2
    NCJ 高斯白噪声 均值0,方差1
    SFMJ 调制系数
    周期
    分段数
    5×106
    2.5 μs
    4
    CSJ 梳状谱个数 4~8
    NAMJ 高斯白噪声
    幅度
    均值0,方差1
    1
    NFMJ 高斯白噪声
    调制系数
    均值0,方差1
    2×108
    ISFJ 采样次数
    转发次数
    占空比
    3~5
    1
    0.4~0.6
    C&IJ+CSJ
    SMSPJ+ISFJ
    由单一干扰参数决定
    下载: 导出CSV

    表  2  不同JNR下的干扰识别结果(%)

    JNR(dB)
    –12 –9 –6 –3 0 3
    1DCNN 51.00 61.50 70.22 80.11 85.44 89.23
    2DCNN 61.50 84.00 92.00 99.50 100.00 100.00
    多域特征融合子网络(软阈值收缩[14]) 52.00 81.00 91.50 97.00 99.50 99.00
    多域特征融合子网络(半软阈值收缩) 85.50 93.00 99.00 100.00 100.00 100.00
    孪生时域网络 74.88 77.56 81.11 85.24 90.33 92.33
    孪生时频域网络 80.33 84.33 93.55 99.85 100.00 100.00
    本文方法 87.59 93.50 100.00 100.00 100.00 100.00
    下载: 导出CSV

    表  3  消融实验(%)

    半软阈值收缩模块 多尺度卷积块 CBAM JNR(dB)
    –12 –9 –6 –3 0 3
    模型1 × 85.50 93.50 98.00 99.50 100.00 100.00
    模型2 × 87.50 93.00 99.00 99.00 100.00 100.00
    模型3 × 86.00 93.00 99.00 100.00 100.00 100.00
    本文方法 87.59 93.50 100.00 100.00 100.00 100.00
    下载: 导出CSV

    表  4  不同识别方法在不同JNR下的识别结果(%)

    JNR (dB)
    –12 –9 –6 –3 0 3
    RF[3] 73.00 74.50 75.00 83.00 91.50 95.50
    VGG[6] 53.50 79.50 88.50 97.00 99.50 100.00
    DFCN[7] 61.50 82.50 96.00 97.00 100.00 100.00
    ResNet50[8] 59.00 84.00 92.50 100.00 100.00 100.00
    MobileViT_CA[9] 58.50 79.50 92.50 97.50 99.50 100.00
    CNN[11] 63.50 84.50 92.00 98.00 100.00 100.00
    本文方法 87.50 93.50 100.00 100.00 100.00 100.00
    下载: 导出CSV

    表  5  不同方法下各类干扰的识别结果(%)

    RF[3] VGG[6] DFCN[7] ResNet50[8] MobileViT_CA[9] CNN[11] 本文方法
    SMSPJ 54.16 75.83 90.00 80.83 79.10 84.17 91.67
    C&IJ 50.00 95.00 90.83 95.00 97.50 96.67 98.33
    NCJ 100.00 80.83 95.83 75.83 83.33 85.83 100.00
    SFMJ 67.50 94.17 89.17 95.83 92.50 95.83 98.33
    CSJ 75.00 78.33 76.67 88.33 85.83 80.00 95.83
    NAMJ 99.17 75.83 97.50 90.00 77.50 81.67 100.00
    NFMJ 100.00 99.17 100.00 100.00 100.00 98.33 100.00
    ISFJ 95.00 91.67 88.33 94.17 95.83 96.67 96.67
    C&IJ+CSJ 88.33 85.00 82.50 82.50 80.83 85.00 93.33
    SMSPJ+ISFJ 91.67 87.50 84.17 90.83 86.67 92.50 94.17
    准确率 82.08 86.33 89.50 89.33 87.92 89.67 96.83
    运算量(GB) \ 5.06 0.43 1.35 0.45 0.54 0.68
    参数量(MB) \ 65.10 0.99 23.53 5.07 6.79 0.26
    下载: 导出CSV

    表  6  不同训练样本数量下的干扰识别结果(%)

    每类训练样本数量
    15203040
    RF[3]78.0479.5080.2480.78
    VGG[6]72.8085.6291.1994.50
    DFCN[7]64.0269.8789.0692.83
    ResNet50[8]83.6484.6290.9193.67
    MobileViT_CA[9]72.4375.0085.3786.00
    CNN[11]88.5592.2594.3296.50
    本文方法96.7196.8898.2998.50
    下载: 导出CSV
  • [1] YAN Junkun, LIU Hongwei, JIU Bo, et al. Joint detection and tracking processing algorithm for target tracking in multiple radar system[J]. IEEE Sensors Journal, 2015, 15(11): 6534–6541. doi: 10.1109/JSEN.2015.2461435.
    [2] LI Xinrui, CHEN Baixiao, CHEN Xiaoying, et al. An efficient hybrid jamming suppression method for multichannel synthetic aperture radar based on group iterative separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5214316. doi: 10.1109/TGRS.2024.3409713.
    [3] 祝存海. 基于特征提取的雷达有源干扰信号分类研究[D]. [硕士论文], 西安电子科技大学, 2017. doi: 10.7666/d.D01385660.

    ZHU Cunhai. Research on radar active jamming signal disturbance classification base on feature extraction[D]. [Master dissertation], Xidian University, 2017. doi: 1 0.7666/d.D01385660.
    [4] 郝万兵, 马若飞, 洪伟. 基于时频特征提取的雷达有源干扰识别[J]. 火控雷达技术, 2017, 46(4): 11–15. doi: 10.3969/j.issn.1008-8652.2017.04.003.

    HAO Wanbing, MA Ruofei, and HONG Wei. Radar active jamming identification based on time-frequency characteristic extraction[J]. Fire Control Radar Technology, 2017, 46(4): 11–15. doi: 10.3969/j.issn.1008-8652.2017.04.003.
    [5] WANG Yafeng, SUN Boye, and WANG Ning. Recognition of radar active-jamming through convolutional neural networks[J]. The Journal of Engineering, 2019, 2019(21): 7695–7697. doi: 10.1049/joe.2019.0659.
    [6] LI Ming, REN Qinghua, and WU Jialong. Interference classification and identification of TDCS based on improved convolutional neural network[C]. 2020 Second International Conference on Artificial Intelligence Technologies and Application (ICAITA), Dalian, China, 2020: 012155. doi: 10.1088/1742-6596/1651/1/012155.
    [7] SHAO Guangqing, CHEN Yushi, and WEI Yinsheng. Deep fusion for radar jamming signal classification based on CNN[J]. IEEE Access, 2020, 8: 117236–117244. doi: 10.1109/ACCESS.2020.3004188.
    [8] WANG Jingyi, DONG Wenhao, and SONG Zhiyong. Radar active jamming recognition based on time-frequency image classification[C]. 2021 5th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 2021: 449–454. doi: 10.1145/3501409.3502153.
    [9] ZOU Wenxu, XIE Kai, and LIN Jinjian. Light‐weight deep learning method for active jamming recognition based on improved MobileViT[J]. IET Radar, Sonar & Navigation, 2023, 17(8): 1299–1311. doi: 10.1049/rsn2.12420.
    [10] KOCH G, ZEMEL R, and SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1–8.
    [11] WANG Pengyu, CHENG Yufan, DONG Binhong, et al. Convolutional neural network-based interference recognition[C]. 2020 IEEE 20th International Conference on Communication Technology, Nanning, China, 2020: 1296–1300. doi: 10.1109/ICCT50939.2020.9295942.
    [12] ZHOU Hongping, WANG Lei, and GUO Zhongyi. Compound radar jamming recognition based on signal source separation[J]. Signal Processing, 2023, 214: 109246. doi: 10.1016/j.sigpro.2023.109246.
    [13] YANG Jikai, BAI Zhiquan, HU Jiacheng, et al. Time-frequency analysis and convolutional neural network based Fuze jamming signal recognition[C]. The 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 2023: 277–282. doi: 10.23919/ICACT56868.2023.10079346.
    [14] ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681–4690. doi: 10.1109/TII.2019.2943898.
    [15] LEI Sai, LU Mingming, LIN Jieqiong, et al. Remote sensing image denoising based on improved semi-soft threshold[J]. Signal, Image and Video Processing, 2021, 15(1): 73–81. doi: 10.1007/s11760-020-01722-3.
    [16] HUANG Jiru, SHEN Qian, WANG Min, et al. Multiple attention siamese network for high-resolution image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5406216. doi: 10.1109/TGRS.2021.3127580.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  55
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2025-04-18
  • 网络出版日期:  2025-05-08

目录

    /

    返回文章
    返回