高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无意调相边带信息的雷达辐射源个体识别

黄湘松 王振 潘大鹏 赵一洋

黄湘松, 王振, 潘大鹏, 赵一洋. 基于无意调相边带信息的雷达辐射源个体识别[J]. 电子与信息学报, 2025, 47(6): 1762-1771. doi: 10.11999/JEIT240774
引用本文: 黄湘松, 王振, 潘大鹏, 赵一洋. 基于无意调相边带信息的雷达辐射源个体识别[J]. 电子与信息学报, 2025, 47(6): 1762-1771. doi: 10.11999/JEIT240774
HUANG Xiangsong, WANG Zhen, PAN Dapeng, ZHAO Yiyang. Radar Emitter Individual Identification Based on Information Sidebands of Unintentional Phase Modulation on Pulses[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1762-1771. doi: 10.11999/JEIT240774
Citation: HUANG Xiangsong, WANG Zhen, PAN Dapeng, ZHAO Yiyang. Radar Emitter Individual Identification Based on Information Sidebands of Unintentional Phase Modulation on Pulses[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1762-1771. doi: 10.11999/JEIT240774

基于无意调相边带信息的雷达辐射源个体识别

doi: 10.11999/JEIT240774 cstr: 32379.14.JEIT240774
基金项目: 黑龙江省教育科学规划课题(GJC1319018),哈尔滨工程大学校级本科教育教学改革研究项目(JG2019B24, JG2019B86)
详细信息
    作者简介:

    黄湘松:女,讲师,研究方向为雷达信号智能分选与识别

    王振:男,硕士生,研究方向为特定辐射源识别

    潘大鹏:男,高级实验师,研究方向为宽带信号处理

    赵一洋:男,硕士生,研究方向为雷达辐射源个体识别

    通讯作者:

    潘大鹏 pandapeng@hrbeu.edu.cn

  • 中图分类号: TN971

Radar Emitter Individual Identification Based on Information Sidebands of Unintentional Phase Modulation on Pulses

Funds: Heilongjiang Province Education Science Planning Project (GJC1319018), Harbin Engineering University School-level Undergraduate Education and Teaching Reform Research Project (JG2019B24, JG2019B86)
  • 摘要: 无意调相是雷达辐射源个体识别中的关键信息,能够提供细微的相位变化信息,捕捉到不同辐射源的微小差异,在区分具有相似硬件结构的雷达辐射源时具有显著优势。针对同一厂家生产的同型号辐射源无意调相特性区分性不明显的问题,该文提出一种基于无意调相边带信息与深度学习相结合的个体识别方法。通过深入挖掘无意调相特性中的边带信息,增强不同辐射源个体间的差异性,并引入双路循环膨胀卷积网络增加神经网络感受野。实验实测数据显示,该方法在信噪比为5 dB的条件下,仍能对10台同型号的辐射源实现87.58%的平均识别准确率,对比1维残差网络,识别精度提高了21.41%。
  • 图  1  含噪UPMOP曲线

    图  2  不同本征模函数及对应WSST时频图像

    图  3  不同信号分量WSST侧视图

    图  4  脊线均值分布图

    图  5  双路网络识别算法架构图

    图  6  循环膨胀卷积图解

    图  7  原始信号SNR估计箱线图

    图  8  对齐后的时域信号

    图  9  不同型号的辐射源UPMOP光滑特性曲线

    图  10  10 dB下两种网络的测试集损失随迭代次数的变化

    图  11  不同识别算法热图对比

    图  12  不同算法识别性能对比

    1  ISOUPMOP提取流程

     初始化:UPMOP序列$ {\boldsymbol{u}} $,阈值$ \tau $,$ {\text{IM}}{{\text{F}}_{{\text{keep}}}} = [\;] $
     分解$ {u} = \displaystyle\sum\nolimits_{k = 1}^{K - 1} {{u_k}(n)} $得到不同本征模函数$ {\text{IM}}{{\text{F}}k} = {u_k}(n) $
     For $ k $=1: $ K{{ - 1}} $
      计算得到时频矩阵 $ {{\boldsymbol{T}}_k}(n,f) = {\text{WSST(}}{u_k}{{(n))}} $
      提取脊线$ {R_k}(n) = \arg \mathop {\max }\limits_f {{\boldsymbol{T}}_k}(n,f) $
      计算脊线均值$ {\gamma _k} = \dfrac{1}{N}\displaystyle\sum\nolimits_{n = 0}^N {{R_k}(n)} $
      If $ {\gamma _k} > \tau $,则$ {\text{IM}}{{\text{F}}_{{\text{keep}}}} \leftarrow {\text{IM}}{{\text{F}}_{{\text{keep}}}} \cup \left\{ {{u_k}(n)} \right\} $
      Return $ {\text{IM}}{{\text{F}}_{{\text{keep}}}} $
     输出:$ {x} = \displaystyle\sum\nolimits_{{{\boldsymbol{u}}_k} \in {\text{IM}}{{\text{F}}_{{\text{keep}}}}} {{u_k}(n)} $
    下载: 导出CSV

    表  1  信号参数设置

    调制方式 参数 取值
    LFM 中心频率(GHz) 1.5
    调制带宽(MHz) $ {B_1} \text{~} {B_4} $
    脉冲宽度(μs) 10
    下载: 导出CSV
  • [1] PENG Heli, XIE Kai, and ZOU Wenxu. Research on an enhanced multimodal network for specific emitter identification[J]. Electronics, 2024, 13(3): 651. doi: 10.3390/electronics13030651.
    [2] 张立民, 谭凯文, 闫文君, 等. 基于持续学习和联合特征提取的特定辐射源识别[J]. 电子与信息学报, 2023, 45(1): 308–316. doi: 10.11999/JEIT211176.

    ZHANG Limin, TAN Kaiwen, YAN Wenjun, et al. Specific emitter identification based on continuous learning and joint feature extraction[J]. Journal of Electronics & Information Technology, 2023, 45(1): 308–316. doi: 10.11999/JEIT211176.
    [3] GUO Shanzeng, AKHTAR S, and MELLA A. A method for radar model identification using time-domain transient signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3132–3149. doi: 10.1109/TAES.2021.3074129.
    [4] LI Haozhe, LIAO Yilin, WANG Wenhai, et al. A novel time-domain graph tensor attention network for specific emitter identification[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5501414. doi: 10.1109/TIM.2023.3241976.
    [5] 肖易寒, 王博煜, 于祥祯, 等. 基于双路射频指纹卷积神经网络与特征融合的雷达辐射源个体识别[J]. 电子与信息学报, 2024, 46(8): 3238–3245. doi: 10.11999/JEIT231236.

    XIAO Yihan, WANG Boyu, YU Xiangzhen, et al. Radar emitter identification based on dual radio frequency fingerprint convolutional neural network and feature fusion[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3238–3245. doi: 10.11999/JEIT231236.
    [6] 刘钊, 马爽, 张梦杰, 等. 多径条件下的雷达辐射源个体识别方法[J]. 电子学报, 2023, 51(6): 1654–1665. doi: 10.12263/DZXB.20220990.

    LIU Zhao, MA Shuang, ZHANG Mengjie, et al. Radar specific emitter identification method under multipath conditions[J]. Acta Electronica Sinica, 2023, 51(6): 1654–1665. doi: 10.12263/DZXB.20220990.
    [7] 叶浩欢, 柳征, 姜文利. 考虑多普勒效应的脉冲无意调制特征比较[J]. 电子与信息学报, 2012, 34(11): 2654–2659.

    YE Haohuan, LIU Zheng, and JIANG Wenli. A comparison of unintentional modulation on pulse features with the consideration of Doppler effect[J]. Journal of Electronics & Information Technology, 2012, 34(11): 2654–2659.
    [8] 秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084.

    QIN Xin, HUANG Jie, WANG Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084.
    [9] ZHANG Wenxu, ZHANG Fosheng, ZHAO Zhongkai, et al. Radar specific emitter identification via the Attention-GRU model[J]. Digital Signal Processing, 2023, 142: 104198. doi: 10.1016/j.dsp.2023.104198.
    [10] TRIBOLET J. A new phase unwrapping algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, 25(2): 170–177. doi: 10.1109/TASSP.1977.1162923.
    [11] RU Xiaohu, LIU Zheng, JIANG Wenli, et al. Recognition performance analysis of instantaneous phase and its transformed features for radar emitter identification[J]. IET Radar, Sonar & Navigation, 2016, 10(5): 945–952. doi: 10.1049/iet-rsn.2014.0512.
    [12] MORALES S and BOWERS M E. Time-frequency analysis methods and their application in developmental EEG data[J]. Developmental Cognitive Neuroscience, 2022, 54: 101067. doi: 10.1016/j.dcn.2022.101067.
    [13] YU Xiao, LIANG Zhongting, WANG Youjie, et al. A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions[J]. Measurement, 2022, 201: 111597. doi: 10.1016/j.measurement.2022.111597.
    [14] DAUBECHIES I, LU Jianfeng, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261. doi: 10.1016/j.acha.2010.08.002.
    [15] LI Shuai, LI Wanqing, COOK C, et al. Independently recurrent neural network (IndRNN): Building a longer and deeper RNN[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5457–5466. doi: 10.1109/CVPR.2018.00572.
    [16] TAY Y, DEHGHANI M, BAHRI D, et al. Efficient transformers: A survey[J]. ACM Computing Surveys, 2022, 55(6): 109. doi: 10.1145/3530811.
    [17] HEWAGE P, BEHERA A, TROVATI M, et al. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24(21): 16453–16482. doi: 10.1007/s00500-020-04954-0.
    [18] CHENG Lei, KHALITOV R, YU Tong, et al. Classification of long sequential data using circular dilated convolutional neural networks[J]. Neurocomputing, 2023, 518: 50–59. doi: 10.1016/j.neucom.2022.10.054.
    [19] ZHANG Jinglu, NIE Yinyu, LYU Yao, et al. Symmetric dilated convolution for surgical gesture recognition[C]. The 23rd International Conference on Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, Lima, Peru, 2020: 409–418. doi: 10.1007/978-3-030-59716-0_39.
    [20] 唱亮, 汪芙平. 非协作通信中的盲信噪比估计算法[J]. 通信学报, 2008, 29(3): 76–81. doi: 10.3321/j.issn:1000-436X.2008.03.012.

    CHANG Liang and WANG Fuping. Blind SNR estimation in non-cooperative communications[J]. Journal on Communications, 2008, 29(3): 76–81. doi: 10.3321/j.issn:1000-436X.2008.03.012.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  62
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 修回日期:  2025-05-16
  • 网络出版日期:  2025-05-31
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回