高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密集低轨卫星网络辅助地面通信的鲁棒波束赋形方法

郑斌 曾令昕 黄辉 王晓洪 丁昌峰 王金元

郑斌, 曾令昕, 黄辉, 王晓洪, 丁昌峰, 王金元. 密集低轨卫星网络辅助地面通信的鲁棒波束赋形方法[J]. 电子与信息学报, 2025, 47(3): 623-632. doi: 10.11999/JEIT240732
引用本文: 郑斌, 曾令昕, 黄辉, 王晓洪, 丁昌峰, 王金元. 密集低轨卫星网络辅助地面通信的鲁棒波束赋形方法[J]. 电子与信息学报, 2025, 47(3): 623-632. doi: 10.11999/JEIT240732
ZHENG Bin, ZENG Lingxin, HUANG Hui, WANG Xiaohong, DING Changfeng, WANG Jinyuan. Robust Beamforming Method for Dense LEO Satellite Network Assisted Terrestrial Communication[J]. Journal of Electronics & Information Technology, 2025, 47(3): 623-632. doi: 10.11999/JEIT240732
Citation: ZHENG Bin, ZENG Lingxin, HUANG Hui, WANG Xiaohong, DING Changfeng, WANG Jinyuan. Robust Beamforming Method for Dense LEO Satellite Network Assisted Terrestrial Communication[J]. Journal of Electronics & Information Technology, 2025, 47(3): 623-632. doi: 10.11999/JEIT240732

密集低轨卫星网络辅助地面通信的鲁棒波束赋形方法

doi: 10.11999/JEIT240732
基金项目: 重庆市自然科学联合基金项目(CSTB2023NSCQ-LZX0121),南京邮电大学引进人才科研启动基金项目(自然科学)(NY223024),东南大学移动通信全国重点实验室开放研究基金资助课题(2024D11),交通物联网技术湖北省重点实验室开放基金
详细信息
    作者简介:

    郑斌:男,高级工程师,研究方向为基带芯片、卫星通信算法

    曾令昕:男,高级工程师,研究方向为射频芯片、卫星通信算法

    黄辉:女,高级工程师,研究方向为卫星通信算法、数字信号处理与实现

    王晓洪:女,高级工程师,研究方向为卫星通信、卫星导航信号处理

    丁昌峰:男,讲师,研究方向为卫星通信、边缘计算和通感一体化技术等

    王金元:男,副教授,研究方向为可见光通信、无线通信资源优化等

    通讯作者:

    丁昌峰 cfding@njupt.edu.cn

  • 中图分类号: TN927.2

Robust Beamforming Method for Dense LEO Satellite Network Assisted Terrestrial Communication

Funds: Chongqing Natural Science Joint Fund Project (CSTB2023NSCQ-LZX0121), The Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (NY223024). The Open Research Fundation of National Mobile Communications Research Laboratory, Southeast University (2024D11), The Open Research Fundation of Hubei Key Laboratory of Transportation Internet of Things, China
  • 摘要: 面向密集低轨道卫星网络辅助的星地无线通信系统,该文提出一种基于非完美信道状态信息的多低轨卫星鲁棒波束赋形方法来改善频谱效率。具体地,在多低轨卫星全频复用场景下,提出了一个多卫星下行通信系统和速率最大化问题,并联合考虑卫星发射功率、卫星与用户关联关系,以及馈线链路容量约束。为了求解该优化问题,原优化问题被分解成卫星-用户关联和卫星传输波束赋形两个子问题,然后使用加权最小均方误差方法和连续凸近似方法对问题进行求解。仿真结果验证了即使在非理想信道条件下,该文所提出的多星频率复用和鲁棒波束赋形设计方法能有效提高系统吞吐量。
  • 图  1  密集LEO卫星辅助地面通信网络模型

    图  2  卫星和UT的几何关系

    图  3  系统和速率与卫星发射功率的关系

    图  4  系统和速率与卫星发射功率以及回程链路容量的关系

    图  5  系统和速率与AoA不确定性$\varDelta $的关系

    图  6  系统和速率与卫星天线数量的关系

    1  求解问题式(9)的迭代优化算法

     1:初始化:给定可行的波束赋形向量$\left\{ {{\boldsymbol{w}}_{s,i}^{\left( 0 \right)}} \right\}$和二进制关联值$\left\{ {a_{i,s}^{\left( 0 \right)}} \right\}$,设置容差$\varepsilon \gt 0$,迭代索引$n = 0$,最大迭代次数${N_{\max }}$。
     2:repeat
     3:根据式(10),将不确定信道进行均匀离散化;
     4:给定$\left\{ {{\boldsymbol{w}}_{s,i}^{\left( n \right)}} \right\}$,更新$v_{s,i}^{{\text{opt}}}$, $ u_{s,i}^{{\text{opt}}} $和$e_{s,i}^{{\text{opt}}}$,得到式(14)中的$ {\tilde R_{s,i}} $;
     5:给定$\left\{ {{\boldsymbol{w}}_{s,i}^{\left( n \right)}} \right\}$和$\left\{ {a_{i,s}^{\left( n \right)}} \right\}$,利用内点法求解问题式(15)得到$\left\{ {a_{i,s}^{\left( {n + 1} \right)}} \right\}$。
     6:给定$\left\{ {a_{i,s}^{\left( {n + 1} \right)}} \right\}$,得到式(16)中的$ {\tilde R_{s,i}} $;
     7:给定$\left\{ {{\boldsymbol{w}}_{s,i}^{\left( n \right)}} \right\}$和$\left\{ {a_{i,s}^{\left( {n + 1} \right)}} \right\}$,采用式(19),得到${\tilde R_{s,i}}$的上界$\tilde R_{s,i}^{\mathrm{U}}$;
     8:给定$\left\{ {{\boldsymbol{w}}_{s,i}^{\left( n \right)}} \right\}$和$\left\{ {a_{i,s}^{\left( {n + 1} \right)}} \right\}$,利用内点法求解问题式(20)得到$\left\{ {{\boldsymbol{w}}_{s,i}^{\left( {n + 1} \right)}} \right\}$。
     9:设置$ n = n + 1 $。
     10:Until:目标函数式(9)收敛或者$n = {N_{\max }}$。
    下载: 导出CSV
  • [1] ALSENWI M, LAGUNAS E, and CHATZINOTAS S. Robust beamforming for massive MIMO LEO satellite communications: A risk-aware learning framework[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6560–6571. doi: 10.1109/TVT.2023.3338065.
    [2] SU Yongtao, LIU Yaoqi, ZHOU Yiqing, et al. Broadband LEO satellite communications: Architectures and key technologies[J]. IEEE Wireless Communications, 2019, 26(2): 55–61. doi: 10.1109/MWC.2019.1800299.
    [3] WITZE A. SpaceX launch highlights threat to astronomy from ‘megaconstellations’[J]. Nature, 2019, 575(7782): 268–269. doi: 10.1038/d41586-019-03446-y.
    [4] DAHM J M. China C4ISR and counter-intervention[R]. 2024.
    [5] HEO J, SUNG S, LEE H, et al. MIMO satellite communication systems: A survey from the PHY layer perspective[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 1543–1570. doi: 10.1109/COMST.2023.3294873.
    [6] 王朝炜, 庞明亮, 王粟, 等. 基于决策性能评估的多波束低地球轨道卫星网络资源分配算法[J]. 通信学报, 2024, 45(7): 37–47. doi: 10.11959/j.issn.1000-436x.2024040.

    WANG Chaowei, PANG Mingliang, WANG Su, et al. Resource allocation algorithm for multi-beam LEO satellite based on decision performance evaluation[J]. Journal on Communications, 2024, 45(7): 37–47. doi: 10.11959/j.issn.1000-436x.2024040.
    [7] VÁZQUEZ M Á, PÉREZ-NEIRA A, CHRISTOPOULOS D, et al. Precoding in multibeam satellite communications: Present and future challenges[J]. IEEE Wireless Communications, 2016, 23(6): 88–95. doi: 10.1109/MWC.2016.1500047WC.
    [8] PEREZ-NEIRA A I, VAZQUEZ M A, SHANKAR M R B, et al. Signal processing for high-throughput satellites: Challenges in new interference-limited scenarios[J]. IEEE Signal Processing Magazine, 2019, 36(4): 112–131. doi: 10.1109/MSP.2019.2894391.
    [9] YOU Li, LI Kexin, WANG Jiaheng, et al. Massive MIMO transmission for LEO satellite communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1851–1865. doi: 10.1109/JSAC.2020.3000803.
    [10] DI Boya, ZHANG Hongliang, SONG Lingyang, et al. Ultra-dense LEO: Integrating terrestrial-satellite networks into 5G and beyond for data offloading[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 47–62. doi: 10.1109/TWC.2018.2875980.
    [11] LIN Zhiyuan, NI Zuyao, KUANG Linling, et al. Multi-satellite beam hopping based on load balancing and interference avoidance for NGSO satellite communication systems[J]. IEEE Transactions on Communications, 2023, 71(1): 282–295. doi: 10.1109/TCOMM.2022.3226190.
    [12] ZHANG Xuan, SUN Shu, TAO Meixia, et al. Multi-satellite cooperative networks: Joint hybrid beamforming and user scheduling design[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 7938–7952. doi: 10.1109/TWC.2023.3346463.
    [13] HUANG Jing and SWINDLEHURST A L. Robust secure transmission in MISO channels based on worst-case optimization[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1696–1707. doi: 10.1109/TSP.2011.2182344.
    [14] LIN Zhi, LIN Min, HUANG Yongming, et al. Robust multi-objective beamforming for integrated satellite and high altitude platform network with imperfect channel state information[J]. IEEE Transactions on Signal Processing, 2019, 67(24): 6384–6396. doi: 10.1109/TSP.2019.2952045.
    [15] 吴翠先, 董燚恒, 徐勇军, 等. 基于不完美CSI的低轨卫星通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(2): 671–679. doi: 10.11999/JEIT230086.

    WU Cuixian, DONG Yiheng, XU Yongjun, et al. Robust resource allocation algorithm for low orbit satellite communication system based on imperfect CSI[J]. Journal of Electronics & Information Technology, 2024, 46(2): 671–679. doi: 10.11999/JEIT230086.
    [16] LIN Min, LIN Zhi, ZHU Weiping, et al. Joint beamforming for secure communication in cognitive satellite terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(5): 1017–1029. doi: 10.1109/JSAC.2018.2832819.
    [17] 苏昭阳, 刘留, 艾渤, 等. 面向低轨卫星的星地信道模型综述[J]. 电子与信息学报, 2024, 46(5): 1684–1702. doi: 10.11999/JEIT230941.

    SU Zhaoyang, LIU Liu, AI Bo, et al. Survey of satellite-ground channel models for low earth orbit satellites[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1684–1702. doi: 10.11999/JEIT230941.
    [18] CLERCKX B and OESTGES C. MIMO Wireless Networks: Channels, Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems[M]. 2nd ed. Amsterdam: Elsevier, 2013. doi: 10.1016/C2010-0-66925-2.
    [19] FONTAN F P, VÁZQUEZ-CASTRO M, CABADO C E, et al. Statistical modeling of the LMS channel[J]. IEEE Transactions on Vehicular Technology, 2001, 50(6): 1549–1567. doi: 10.1109/25.966585.
    [20] ITU-R. ITU-R REPORT M. 2135 Guidelines for evaluation of radio interface technologies for IMT-Advanced[S]. Geneva: ITU-R, 2009.
    [21] SHI Qingjiang, RAZAVIYAYN M, LUO Zhiquan, et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4331–4340. doi: 10.1109/TSP.2011.2147784.
    [22] MA Shuai, HONG Mingyi, SONG Enbin, et al. Outage constrained robust secure transmission for MISO wiretap channels[J]. IEEE Transactions on Wireless Communications, 2014, 13(10): 5558–5570. doi: 10.1109/TWC.2014.2326415.
    [23] CAO Xuelin, YANG Bo, SHEN Yulong, et al. Edge-assisted multi-layer offloading optimization of LEO satellite-terrestrial integrated networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 381–398. doi: 10.1109/JSAC.2022.3227032.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  62
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2025-02-11
  • 网络出版日期:  2025-02-19
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回