高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合智能反射面辅助感通算一体化车联网的联合功率时间分配方法

束锋 张钧豪 张旗 姚誉 卞弘艺 王咸鹏

束锋, 张钧豪, 张旗, 姚誉, 卞弘艺, 王咸鹏. 混合智能反射面辅助感通算一体化车联网的联合功率时间分配方法[J]. 电子与信息学报. doi: 10.11999/JEIT240719
引用本文: 束锋, 张钧豪, 张旗, 姚誉, 卞弘艺, 王咸鹏. 混合智能反射面辅助感通算一体化车联网的联合功率时间分配方法[J]. 电子与信息学报. doi: 10.11999/JEIT240719
SHU Feng, ZHANG Junhao, ZHANG Qi, YAO Yu, BIAN Hongyi, WANG Xianpeng. Hybrid Reflecting Intelligent Surface Assisted Sensing Communication and Computation for Joint Power and Time Allocation in Vehicle Ad-hoc Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240719
Citation: SHU Feng, ZHANG Junhao, ZHANG Qi, YAO Yu, BIAN Hongyi, WANG Xianpeng. Hybrid Reflecting Intelligent Surface Assisted Sensing Communication and Computation for Joint Power and Time Allocation in Vehicle Ad-hoc Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240719

混合智能反射面辅助感通算一体化车联网的联合功率时间分配方法

doi: 10.11999/JEIT240719
基金项目: 国家自然科学基金(U22A2002, 62071234),海南省科技专项基金(ZDKJ2021022),海南大学科研启动项目(KYQD(ZR)-21008),海南大学信息技术协同创新中心项目(XTCX2022XXC07)
详细信息
    作者简介:

    束锋:教授,博士生导师,研究方向为智能无线通信、信息安全和大规模MIMO测向与定位等

    张钧豪:硕士生,研究方向为雷达通信一体化、无线通信等

    张旗:博士生,研究方向为雷达通信一体化、无线物理层安全、隐蔽通信等

    姚誉:教授,博士生导师,研究方向为雷达波形设计与处理、雷达通信一体化、最优化理论算法以及阵列信号处理等

    卞弘艺:博士生,研究方向为雷达波形设计与处理、雷达通信一体化等

    王咸鹏:教授,博士生导师,研究方向为海洋信息感知与处理技术、阵列信号处理、先进体制雷达信号处理、通信信号处理技术

    通讯作者:

    姚誉 shell8696@hotmail.com

  • 中图分类号: TN92

Hybrid Reflecting Intelligent Surface Assisted Sensing Communication and Computation for Joint Power and Time Allocation in Vehicle Ad-hoc Network

Funds: The National Natural Science Foundation of China (U22A2002, 62071234), Hainan Province Science and Technology Special Fund (ZDKJ2021022), The Scientific Research Fund Project of Hainan University(KYQD(ZR)-21008), The Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
  • 摘要: 当前车联网(V2X)环境普遍存在频谱资源紧缺和数据传输效率低的问题。该文通过集成感知、通信和计算车联网系统(ISCC-V2X)以提升车辆用户的数据传输能力。ISCC-V2X中采用雷达感知技术帮助次用户接入主用户频谱空洞进行车联网通信,在车辆用户中加入计算单元提升数据传输卸载能力,为了更好地提升车联网通信和计算性能并同时降低系统功耗,在ISCC-V2X中引入混合智能反射面(H-RIS)。该研究从时间和功率资源分配的角度出发,对H-RIS辅助的ISCC-V2X技术进行了深入探讨。该文采用了一种两阶段的优化方法,对功率分配、时间分配和反射元件进行交替优化求解,以找到最佳的优化方案,并通过定义联合吞吐量(JTC)的性能指标来表征次用户的数据传输能力和计算性能。通过仿真实验分析表明,在H-RIS辅助ISCC-V2X场景中存在一种时间功率联合分配的最优策略,能够显著提升次用户的联合吞吐量。
  • 图  1  H-RIS辅助ISCC-V2X系统模型

    图  2  多用户干扰场景($ {\text{d}} $表示雷达感知半径,$ {\text{h}} $表示道路宽度)

    图  3  H-RIS辅助ISCC-V2X的时隙联合分配方案示意图

    图  4  H-RIS辅助的ISCC-V2X场景中由不同${N_{{\text{HR}}}}$参数化的算法4的收敛性

    图  5  目标次用户联合吞吐量和雷达系统功率关系图(不同的感知时间)

    图  6  目标次用户联合吞吐量和雷达系统功率关系图

    图  7  目标次用户联合吞吐量和H-RIS反射元件数量${N_{{\text{HR}}}}$关系图

    图  8  目标次用户联合吞吐量和莱斯因子$\kappa $关系图

    图  9  不同场景下目标次用户联合ASU吞吐量和发射功率${P_c}$关系图

    图  10  目标次用户联合吞吐量和有源反射元件数量${N_{\text{A}}}$关系图

    图  11  目标次用户联合吞吐量和雷达的综合关系图

    1  基于PCCP的无源反射元件系数优化算法

     初始化 $ {{\boldsymbol{\phi}} ^{(0)}} $, $\upsilon \gt 1$, ${\lambda ^{(0)}} \gt 0$,并设 $i = 0$
     Repeat:
     (1) if $i \lt {I_{\max }}$
     (2)  求解(41)并将最优质记为$ {{\boldsymbol{\phi}} ^{(i + 1)}} $
     (3)  更新${\lambda ^{(i + 1)}} = \min \{ \upsilon {\lambda ^{(i)}},{\lambda _{\max }}\} $
     (4)  $i = i + 1$
     (5) else
     (6)  重新初始化一个新的$ {{\boldsymbol{\phi}} ^{(0)}} $, $\upsilon \gt 1$,${\lambda ^{(0)}} \gt 0$ and $i = 0$.
     (7) end if
     Until: ${\left\| {{{\boldsymbol{\phi}} ^{(i)}} - {{\boldsymbol{\phi}} ^{(i - 1)}}} \right\|_1} \le {\varepsilon ^{'}}$,${\left\| {\boldsymbol{b}} \right\|_1} \le {\varepsilon ^{''}}$
     输出:最优值${\boldsymbol{{\phi}} ^{(*)}} = {{\boldsymbol{\phi}} ^{(i)}}$
    下载: 导出CSV

    2  基于外点法关于时间分配向量的优化算法

     初始化${\delta ^{(0)}}$,${{\boldsymbol{t}}_{\boldsymbol{c}}}^{(0)} = \{ {t_{{\text{sense}}}}^{(0)},{t_{{\text{comm}}}}^{(0)},{t_{{\text{comp}}}}^{(0)}\} $,计算$ {{\boldsymbol{\theta }}^{(0)}} $并设$k = 0$,收敛精度${\varepsilon _1}$ 和${\varepsilon _2}$,惩罚系数$ c $
     (1) 用单纯形法求辅助函数$F({{\boldsymbol{t}}_{\boldsymbol{c}}},\delta )$的无约束极值点${{\boldsymbol{t}}_{\boldsymbol{c}}}^*({\delta ^{(k + 1)}})$
     (2) 计算${{\boldsymbol{t}}_{\boldsymbol{c}}}^*({\delta ^{(k)}})$的约束违反情况
     (3) 如果$\min \{ {g_1}({{\boldsymbol{t}}_{\boldsymbol{c}}}^{\boldsymbol{*}}({\delta ^{(k)}})),{g_2}({{\boldsymbol{t}}_{\boldsymbol{c}}}^{\boldsymbol{*}}({\delta ^{(k)}})),{g_3}({{\boldsymbol{t}}_{\boldsymbol{c}}}^{\boldsymbol{*}}({\delta ^{(k)}}))\} \le {\varepsilon _1}$,${{\boldsymbol{t}}_{\boldsymbol{c}}}^*({\delta ^{(k)}})$接近约束边界,本文停止迭代并输出最优解${{\boldsymbol{t}}_{\boldsymbol{c}}}^*({\delta ^{(k)}})$到
     AOIA进行下一步计算。否则,继续下一步。
     (4) 若$\left\| {{{\boldsymbol{t}}_{\boldsymbol{c}}}^*({\delta ^{(k + 1)}}) - {{\boldsymbol{t}}_{\boldsymbol{c}}}^*({\delta ^{(k)}})} \right\| \le {\varepsilon _2}$,停止迭代。否则$k = k + 1$,$ {\delta ^{(k + 1)}} = c{\delta ^{(k)}} $,${{\boldsymbol{t}}_{\boldsymbol{c}}}^{(0)} = {{\boldsymbol{t}}_{\boldsymbol{c}}}^*({\delta ^{(k)}})$,跳回到第2步重新计算。
    下载: 导出CSV

    3  采用增广拉格朗日算法来求解最优功率分配向量算法

     1. 初始化 $ {\lambda _0} \ge 0 $,$ {\mu _0} $,$ {({p_{{\text{sense}}}})^{(0)}} $,并设$k = 0$
     2. 求解雷达系统功率,$ {({p_{{\text{sense}}}})^{(k + 1)}} = \arg \mathop {\min }\limits_{{p_{{\text{sense}}}}} L({({p_{{\text{sense}}}})^{(k)}},{\lambda _k},{\mu _k},\rho ) $
     3. $ {\lambda _{k + 1}} = {\lambda _k} + \rho {\gamma _1}{\text{(}}{({p_{{\text{sense}}}})^{(k)}}{\text{)}} $,$ {\mu _{k + 1}} = {\mu _k} + \rho {\gamma _2}{\text{(}}{({p_{{\text{sense}}}})^{(k)}}{\text{)}} $
     4 .若$L({({p_{{\text{sense}}}})^{(k + 1)}},{\lambda _{k + 1}},{\mu _{k + 1}},\rho ) - L({({p_{{\text{sense}}}})^{(k)}},{\lambda _k},{\mu _k},\rho ) \le \varepsilon $,停止迭代,输出${({p_{{\text{sense}}}})^{(*)}} = {({p_{{\text{sense}}}})^{(k + 1)}}$。否则$k = k + 1$,跳回
     到第三步重新计算。
    下载: 导出CSV

    4  基于交替优化的迭代算法

     1. 初始化 $ {{\boldsymbol{\theta }}^{(0)}} $, ${{\boldsymbol{t}}_{\boldsymbol{c}}}^{(0)}$, $ {{\boldsymbol{P}}^{(0)}} $, $ R({{\boldsymbol{\theta }}^{(0)}},{{\boldsymbol{t}}_{\boldsymbol{c}}}^{(0)},{{\boldsymbol{P}}^{(0)}}) $,并设$r = 0$
     2. Repeat
     3. 对于给定的$ \{ {{\boldsymbol{\theta }}^{(r)}},{{\boldsymbol{P}}^{(r)}}\} $求解问题2,并将最优解表示为
     $ {{\boldsymbol{t}}_{\boldsymbol{c}}}^{(r + 1)} $
     4. 对于给定的$ \{ {{\boldsymbol{\theta }}^{(r)}},{{\boldsymbol{P}}^{(r)}},{{\boldsymbol{t}}_{\boldsymbol{c}}}^{(r + 1)}\} $,求解问题1可获得最优解
     $ {{\boldsymbol{\theta }}^{(r + 1)}} $
     5. 对于给定的$ \{ {{\boldsymbol{\theta }}^{(r + 1)}},{{\boldsymbol{P}}^{(r)}},{{\boldsymbol{t}}_{\boldsymbol{c}}}^{(r + 1)}\} $,求解问题3可获得最优
     解$ {{\boldsymbol{P}}^{(r + 1)}} $并计算得到目标函数值$ {R^{(r + 1)}} $
     6. $r = r + 1$
     7. Until目标函数值的变化小于阈值${\mathcal{E}} $。输出最优值
     $ \{ {{\boldsymbol{\theta }}^{(*)}},{{\boldsymbol{P}}^{(*)}},{{\boldsymbol{t}}_{\boldsymbol{c}}}^{(*)},{R^{(*)}}\} $
    下载: 导出CSV

    表  1  仿真参数表

    参数名称参数设置参数名称参数设置
    次用户的时间帧长度${T_{{\text{Total}}}} = 10{\text{ ms}}$假设${Q_0}$概率$ P({Q_0}) = 0.6 $
    次用户每帧总功率${P_{{\text{Total}}}} = 25{\text{ dB}}$假设${Q_1}$概率$ P({Q_1}) = 0.4 $
    雷达脉冲频率$ {f_s} = 100{\text{ KHz}} $BS天线数量$ M = 5 $
    单个雷达脉冲回波信号${\chi _r} = 0{\text{ dB}}$路径损耗指数$ {\partial _1} = {\partial _2} = {\partial _3} = 3 $
    小区半径$500{\text{ m}}$载波频率$ 2{\text{ GHz}} $
    带宽$ 4{\text{ MHz}} $车道数量$ 6 $
    车速$ 70{\text{ km/h}} $车道宽度$ 4{\text{ m}} $
    车辆之间的平均距离$ 2.5{\text{ }}v{\text{, }}v{\text{ in m/s}} $噪声功率($ {\sigma ^2} $)$ - 114{\text{ dBm}} $
    车辆掉落模型空间泊松过程
    下载: 导出CSV
  • [1] MENG Kaitao, WU Qingqing, CHEN Wen, et al. Sensing-assisted communication in vehicular networks with intelligent surface[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 876–893. doi: 10.1109/TVT.2023.3307100.
    [2] TAN Xiaobin, MENG Qiushi, WANG Mingyang, et al. Digital twin-based cloud-native vehicular networks architecture for intelligent driving[J]. IEEE Network, 2024, 38(1): 69–76. doi: 10.1109/MNET.2023.3337271.
    [3] HASAN M, MOHAN S, SHIMIZU T, et al. Securing Vehicle-to-Everything (V2X) communication platforms[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 693–713. doi: 10.1109/TIV.2020.2987430.
    [4] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [5] PEI Yiyang, HOANG A T, and LIANG Yingchang Sensing-throughput tradeoff in cognitive radio networks: How frequently should spectrum sensing be carried out[C]. Proceedings of the 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2017: 1–5. doi: 10.1109/PIMRC.2007.4394632.
    [6] SINGH K, BISWAS S, RATNARAJAH T, et al. Transceiver design and power allocation for full-duplex MIMO communication systems with spectrum sharing radar[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 556–566. doi: 10.1109/TCCN.2018.2830758.
    [7] DUGGAL G, RAM S S, and MISHRA K V. Micro-range detection via Doppler-resilient 802.11ad-based vehicle-to-pedestrian radar[C]. Proceedings of 2019 IEEE Radar Conference, Boston, USA, 2019: 1–6. doi: 10.1109/RADAR.2019.8835525.
    [8] HASHIDA H, KAWAMOTO Y, KATO N, et al. Mobility-aware user association strategy for IRS-aided mm-Wave multibeam transmission towards 6G[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(5): 1667–1678. doi: 10.1109/JSAC.2022.3143216.
    [9] VERMA S, KAWAMOTO Y, and KATO N. A network-aware internet-wide scan for security maximization of IPv6-enabled WLAN IoT devices[J]. IEEE Internet of Things Journal, 2021, 8(10): 8411–8422. doi: 10.1109/JIOT.2020.3045733.
    [10] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [11] LYU Bin, HOANG D T, GONG Shimin, et al. IRS-based wireless jamming attacks: When jammers can attack without power[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1663–1667. doi: 10.1109/LWC.2020.3000892.
    [12] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi 10.1038/lsa.2014.99.
    [13] BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753–116773. doi: 10.1109/ACCESS.2019.2935192.
    [14] 仲伟志, 何艺, 段洪涛, 等. 可重构智能表面辅助的V2I通信系统联合波束赋形算法[J]. 电子与信息学报, 2024, 46(8): 3117–3125. doi: 10.11999/JEIT231324.

    ZHONG Weizhi, HE Yi, DUAN Hongtao, et al. Joint beamforming algorithm for reconfigurable intelligent surface-aided V2I communication system[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3117–3125. doi: 10.11999/JEIT231324.
    [15] NGUYEN N T, VU Q D, LEE K, et al. Hybrid relay-reflecting intelligent surface-assisted wireless communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6228–6244. doi: 10.1109/TVT.2022.3158686.
    [16] BJÖRNSON E, ÖZDOGAN Ö, and LARSSON E G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying[J]. IEEE Wireless Communications Letters, 2020, 9(2): 244–248. doi: 10.1109/LWC.2019.2950624.
    [17] HUANG Ao, GUO Li, MU Xidong, et al. Coexisting passive RIS and active relay-assisted NOMA systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 1948–1963. doi: 10.1109/TWC.2022.3208006.
    [18] LI Qiang, BAI Song, LI Jun, et al. RIS-assisted joint active and passive transmission with distributed reception[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6805–6809. doi: 10.1109/TVT.2022.3229494.
    [19] NGUYEN N T, NGUYEN V D, VAN NGUYEN H, et al. Fairness enhancement of UAV systems with hybrid active-passive RIS[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4379–4396. doi: 10.1109/TWC.2023.3317934.
    [20] LIU Zhipeng, LI Xi, JI Hong, et al. Toward STAR-RIS-empowered integrated sensing and communications: Joint active and passive beamforming design[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 15991–16005. doi: 10.1109/TVT.2023.3294338.
    [21] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
    [22] JEBBAR Y, PROMWONGSA N, BELQASMI F, et al. A case study on the deployment of a tactile internet application in a hybrid cloud, edge, and mobile ad hoc cloud environment[J]. IEEE Systems Journal, 2022, 16(1): 1182–1193. doi: 10.1109/JSYST.2021.3074095.
    [23] 董裕民, 张静, 谢昌佐, 等. 云边端架构下边缘智能计算关键问题综述: 计算优化与计算卸载[J]. 电子与信息学报, 2024, 46(3): 765–776. doi: 10.11999/JEIT230390.

    DONG Yumin, ZHANG Jing, XIE Changzuo, et al. A survey of key issues in edge intelligent computing under cloud-edge-terminal architecture: Computing optimization and computing offloading[J]. Journal of Electronics & Information Technology, 2024, 46(3): 765–776. doi: 10.11999/JEIT230390.
    [24] DAI Penglin, HU Kaiwen, WU Xiao, et al. A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 899–911. doi: 10.1109/TITS.2020.3017172.
    [25] LIU Qian, LIANG Hairong, LUO Rui, et al. Energy-efficiency computation offloading strategy in UAV aided V2X network with integrated sensing and communication[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1337–1346. doi: 10.1109/OJCOMS.2022.3195703.
    [26] MICHAILIDIS E T, VOLAKAKI M G, MIRIDAKIS N I, et al. Optimization of secure computation efficiency in UAV-enabled RIS-assisted MEC-IoT networks with aerial and ground eavesdroppers[J]. IEEE Transactions on Communications, 2024, 72(7): 3994–4009. doi: 10.1109/TCOMM.2024.3372877.
    [27] XIE Hao, LI Dong, and GU Bowen. Exploring hybrid active-passive RIS-aided MEC systems: From the mode-switching perspective[J]. IEEE Transactions on Wireless Communications, 2024, 23(9): 11291–11308. doi: 10.1109/TWC.2024.3380841.
    [28] BIAN Mengqi, SHI Yunmei, HUANG Yi, et al. QoS-aware energy storage maximization in the RIS-aided joint-SWIPT-MEC system[J]. IEEE Communications Letters, 2023, 27(12): 3434–3438. doi: 10.1109/LCOMM.2023.3324716.
    [29] MALIK R and VU M. Optimal transmission using a self-sustained relay in a full-duplex MIMO system[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(2): 374–390. doi: 10.1109/JSAC.2018.2872617.
    [30] XU Sai, DU Yanan, ZHANG Jiliang, et al. An IRS backscatter enabled integrated sensing, communication and computation system[J]. arXiv: 2207.10219, 2022. (查阅网上资料, 请核对文献类型及格式) .
    [31] 姜南. 基于雷达检测的认知车联网关键技术研究[D]. [硕士论文], 北京邮电大学, 2020.

    JIANG Nan. Research on key technologies of cognitive vehicular ad hoc network based on radar detection[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2020.
    [32] GRANT M and BOYD S. CVX: MATLAB software for disciplined convex programming, Version 2.2[EB/OL]. http://cvxr.com/cvx, 2020. (查阅网上资料,请核对作者信息) .
    [33] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. (查阅网上资料, 未找到对应的页码信息, 请确认) .
    [34] BEN-TAL A and NEMIROVSKI A. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications[M]. Philadelphia: SIAM, 2001. (查阅网上资料, 未找到对应的页码信息, 请确认) .
    [35] WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
    [36] 徐勇军, 谷博文, 谢豪, 等. 全双工中继协作下的移动边缘计算系统能耗优化算法[J]. 电子与信息学报, 2021, 43(12): 3621–3628. doi: 10.11999/JEIT200937.

    XU Yongjun, GU Bowen, XIE Hao, et al. Energy consumption optimization algorithm for full-duplex relay-assisted mobile edge computing systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3621–3628. doi: 10.11999/JEIT200937.
    [37] 3GPP. Study on LTE-based V2X services; (Release 14)[R]. document TR 36.885 V14.0. 0, 2016.
    [38] CHEN Yuanbin, WANG Ying, LIU Man, et al. Network slicing enabled resource management for service-oriented ultra-reliable and low-latency vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7847–7862. doi: 10.1109/TVT.2020.2991723.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  10
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-19
  • 修回日期:  2025-01-07
  • 网络出版日期:  2025-01-11

目录

    /

    返回文章
    返回