高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信号到达时间建模的广域多点定位时间同步方法

汤新民 周杨 鲁其兴 管祥民

汤新民, 周杨, 鲁其兴, 管祥民. 基于信号到达时间建模的广域多点定位时间同步方法[J]. 电子与信息学报, 2025, 47(5): 1434-1449. doi: 10.11999/JEIT240670
引用本文: 汤新民, 周杨, 鲁其兴, 管祥民. 基于信号到达时间建模的广域多点定位时间同步方法[J]. 电子与信息学报, 2025, 47(5): 1434-1449. doi: 10.11999/JEIT240670
TANG Xinmin, ZHOU Yang, LU Qixing, GUAN Xiangmin. Wide-Area Multilateration Time Synchronization Method Based on Signal Arrival Time Modeling[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1434-1449. doi: 10.11999/JEIT240670
Citation: TANG Xinmin, ZHOU Yang, LU Qixing, GUAN Xiangmin. Wide-Area Multilateration Time Synchronization Method Based on Signal Arrival Time Modeling[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1434-1449. doi: 10.11999/JEIT240670

基于信号到达时间建模的广域多点定位时间同步方法

doi: 10.11999/JEIT240670
基金项目: 国家自然科学基金(52072174),高端外国专家引进计划(G2023202003L),天津市科技计划(24JCZDJC00090)
详细信息
    作者简介:

    汤新民:男,教授,博士,研究方向为新一代空中交通管制自动化系统、先进场面活动引导与控制系统、无人机运行服务与交通管理系统等

    周杨:男,硕士生,研究方向为空中交通智能化技术、多点定位系统

    鲁其兴:男,博士生,研究方向为先进场面活动引导与控制系统

    管祥民:男,博士,副教授,研究领域为通用航空及无人机

    通讯作者:

    汤新民 tangxinmin@nuaa.edu.cn

  • 中图分类号: TN95; U8

Wide-Area Multilateration Time Synchronization Method Based on Signal Arrival Time Modeling

Funds: The National Natural Science Foundation of China (52072174), High-end Foreign Experts Re-cruitment Program (G2023202003L), Tianjin Science and Technology Plan (24JCZDJC00090)
  • 摘要: 针对低空监视技术广域多点定位(WAM)时间同步困难或复杂度高,影响定位精度的问题,该文构建了基于到达时间(TOA)的时间同步及“同一消息”提取的数学模型,通过计算地面传感器的“同步启动时间”完成同步,计算复杂度低且易于实现。在此基础上,利用同一消息提取模型筛选出TOA用于定位计算。为了提高TOA估计值的精度,减小同步误差。提出了可变滑动滤波与卡尔曼滤波结合 (VMAF-Kalman)的联合滤波方法,提高可编程门阵列 (FPGA)基准时钟的稳定性,减小时钟延迟引起的TOA计数误差。仿真结果表明,联合滤波比单一滤波算法效果更好,TOA计数误差分别降低36.84%和25.36%。对无人机和民航飞机的定位测验结果都表现出较高的定位准确率,定位误差和位置更新速率符合标准要求,证明该文所提模型,具有实用性且有较好的同步精度。
  • 图  1  本文理论流程图

    图  2  驯服时钟系统框架设计

    图  3  时间间隔计数原理

    图  4  同步启动时间结构图

    图  5  同步启动时间计算流程图

    图  6  消息组合提取示意图

    图  7  消息接收时间细化结构图

    图  8  同一消息时间关系结构图

    图  9  TDC计数原始相位差数据

    图  10  不同窗口大小算法滤波效果对比

    图  11  单一滤波和联合滤波的相位差滤波效果对比

    图  12  PID控制输出相位差结果

    图  13  TOA计数差值

    图  14  硬件端结构图

    图  15  无人机定位测试RMSE及偏差结果

    图  16  远端站实物及安放位置

    图  17  实际飞行轨迹与算法定位轨迹对比

    图  18  误差雷达图

    表  1  MAF和VMAF滤波结果

    N=8 N=16 N=32
    MAF-SD/s (s) 4.977 6×10–11 4.763 2×10–11 4.658 2×10–11
    VMAF-SD/s (s) 4.794 5×10–11 4.706 2×10–11 4.646 1×10–11
    MAF-OF 9.726 5×10–4 1.017 7×10–3 1.040 7×10–3
    VMAF-OF 9.704 4×10–4 9.836 2×10–4 1.031 5×10–3
    下载: 导出CSV

    表  2  不同滤波算法的TOA计数差值

    滤波方法 TOA计数平均差值
    (时钟周期)(个)
    TOA计数平均差值
    (时间)(ns)
    联合滤波 1.56 3.902
    Kalman滤波 2.47 6.175
    VMAF 2.09 5.225
    下载: 导出CSV

    表  3  不同定位算法定位结果

    Chan算法 Chan-Taylor组合算法 Fang算法
    $ {\bar s_{\mathrm{h}}} $(m) 136.630 8 101.571 8 120.481 2
    $ {\bar s_{\mathrm{v}}} $(m) 174.502 6 131.751 7 160.341 8
    $ \eta $(%) 80.44 87.02 82.58
    $ t $(s) 3.42 4.18 3.73
    下载: 导出CSV
  • [1] Santos D. Falcão D, Pinto A, et al. Effect of membrane electrode assembly characteristics on the performance of a proton exchange membrane fuel cell stack designed for unmanned aerial vehicle applications[J]. International Journal of Green Energy, 2024, 21(6): 1226–1237. doi: 10.1080/15435075.2023.2244062.
    [2] H. Miyazaki, T. Koga, E. Ueda, Y. Kakubari and S. Nihei, Development of high performance WAM system[C]. 2011 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles, Capri, Italy, 2011, pp. 237–240.
    [3] M. Monteiro et al., Detecting malicious ADS-B broadcasts using wide area multilateration[J]. 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), Prague, Czech Republic, 2015, pp. 4A3-1–4A3-12. doi: 10.1109/DASC.2015.7311413.
    [4] H. Khudov, A. Fedorov, D. Holovniak and G. Misiyuk, Improving the Efficiency of Radar Control of Airspace with the Multilateration System Use[C]. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 2018, pp. 680-684. doi: 10.1109/INFOCOMMST.2018.8632141.
    [5] Jheng S L, Jan S S, Chen Y H, et al. 1090 MHz ADS-B-based wide area multilateration system for alternative positioning navigation and timing[J]. IEEE sensors journal, 2020, 20(16): 9490–9501. doi: 10.1109/JSEN.2020.2988514.
    [6] E. Widdison and D. G. Long, A Review of Linear Multilateration Techniques and Applications[J]. IEEE Access, vol. 12, pp. 26251–26266, 2024, DOI: 10.1109/ACCESS.2024.3361835.
    [7] Neven W, Quilter T J, Weedon R, et al. Wide area multilateration report on EATMP TRS 131/04[M]. Brussels: European Organization for the Safety of Air Navigation, 2004.
    [8] Jiang Chaoshu, Liu Changzhong and Wang Xuegang, GPS synchronized wide area multilateration system[C]. 2009 International Conference on Communications, Circuits and Systems, Milpitas, CA, USA, 2009, pp. 457–459, DOI: 10.1109/ICCCAS.2009.5250465.
    [9] Leonardi, M., Bellipanni, L., Galati, G. (2010). All satellites in view: GNSS-based synchronization for wide area multilateration[C]. The European Navigation Conference Global Navigation Satellite Systems ENC GNSS 2010. Deutsche Gesellschaft für Ortung und Navigation e. V. (DGON).
    [10] R. Seller and Á. Szüllő, Wide area multilateration demonstration system[C]. ICECom 2013, Dubrovnik, Croatia, 2013, pp. 1–5. doi: 10.1109/ICECom.2013.6684741.
    [11] M. Pelant and V. Stejskal, Multilateration system time synchronization via over-determination of TDOA measurements[C]. 2011 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles, Capri, Italy, 2011, pp. 179–183.
    [12] D. Eier and M. Sharples, Method for GPS and GNSS Independent MLAT System Synchronization[C]. 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 2019, pp. 1–6. doi: 10.1109/ICNSURV.2019.8735228.
    [13] 马永圣, 张敏, 郭福成. 基于ADS-B的多站时间同步系统的偏差联合估计方法[J]. 系统工程与电子技术, 2018, 40(04): 726–732. doi: 10.3969/j.issn.1001-506X.2018.04.02.

    MA Yongsheng, ZHANG Min, GuoFucheng. Joint bias estimation method for multi-station time synchronization system based on ADS-B[J]. Systems Engineering and Electronics, 2018, 40(04): 726–732. doi: 10.3969/j.issn.1001-506X.2018.04.02.
    [14] Xu H, Wang G, Guo L, et al. Implementation of field programmable Gate array-based clock synchronization in the fiber channel communication system[J]. The Review of scientific instruments, 2024, 95(3).
    [15] 吴文臻. 基于改进时间同步的矿井UWB优化定位方法[J]. 工矿自动化, 2024, 50(S1): 34–38.

    WU Wenzhen. Research on mine UWB optimized positioning method based on improved time synchronization[J]. Journal of Mine Automation, 2024, 50(S1): 34–38.
    [16] 胡爱华, 邓中亮, 张耀. 基于改进TPSN和卡尔曼滤波的时间同步算法[J]. 现代电子技术, 2018, 41(13): 5–9. doi: 10.16652/j.issn.1004-373x.2018.13.002.

    HU Aihua1, DENG Zhongliang, ZHANG Yao. Time synchronization algorithm based on improved TPSN and Kalman filtering[J]. Modern Electronics Technique, 2018, 41(13): 5–9. doi: 10.16652/j.issn.1004-373x.2018.13.002.
    [17] 王义君, 钱志鸿. 自适应高效无线传感器网络时间同步优化算法[J]. 电子与信息学报, 2022, 44(08): 2802–2813. doi: 10.11999/JEIT210533.

    WANG Yijun, QIANZhihong. Adaptive and Efficient Time Synchronization Optimization Algorithm in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2022, 44(08): 2802–2813. doi: 10.11999/JEIT210533.
    [18] 周华勇, 陈珍萍. 基于群智慧对选择算法的分布式一致性时间同步方法[J]. 传感技术学报, 2023, 36(08): 1296–1302. doi: 10.3969/j.issn.1004-1699.2023.08.017.

    ZHOU Huayong, CHEN Zhenping. Distributed Consensus Time Synchronization Method Based on Group-Wise Pair Selection Algorithm[J]. CHINESE JOURNAL OF SENSORS AND ACTUATORS, 2023, 36(08): 1296–1302. doi: 10.3969/j.issn.1004-1699.2023.08.017.
    [19] Jacek Stefanski, Asynchronous wide area multilateration system[J]. Aerospace Science and Technology, Volume 36, 2014, Pages 94-102, ISSN 1270-9638, https://doi.org/10.1016/j.ast.2014.03.016.
    [20] Stefanski, J. , Sadowski, J. TDOA versus ATDOA for wide area multilateration system[J]. Wireless Com Network, 2018, 179 (2018). https://doi.org/10.1186/s13638-018-1191-5.
    [21] Sadowski J, Stefanski J. Asynchronous WAM with Irregular Pulse Repetition[J]. Journal of Navigation, 2019;72(1): 85-100. doi: 10.1017/S0373463318000607.
    [22] Vyskocil P, Sebesta J. Relative timing characteristics of GPS timing modules for time synchronization application[C]. 2009 International Workshop on Satellite and Space Communications. https://doi.org/10.1109/iwssc.2009.5286378.
    [23] 吴红卫, 李铎, 顾思洪. 小波滤波在时间同步系统中应用研究[J]. 仪器仪表学报, 2019, 40(02): 182–189. doi: 10.19650/j.cnki.cjsi.J1804233.

    Wu Hongwei, Li Duo, Gu Sihong. Application research of wavelet filtering in time synchronization system[J]. Chinese Journal of Scientific Instrument, 2019, 40(02): 182–189. doi: 10.19650/j.cnki.cjsi.J1804233.
    [24] Xiong H, Chen Z, Yang B, et al. TDOA localization algorithm with compensation of clock offset for wireless sensor networks[J]. China Communications, 2015. DOI: 10.1109.
    [25] 丁勇, 王慧聪, 高伟, 等. 基于北斗导航的时钟驯服导航接收机设 计[C]. 第十四届中国卫星导航年会论文集; 2024: 6. DOI: 10.26914/c.cnkihy.2024.000088.

    Yong Ding, Huicong Wang, Wei Gao, et al. Design of Disciplined Clock Navigation Receiver based on Beidou Navigation[C]. Proceedings of the 14th Annual China Satellite Navigation Conference; 2024: 6. DOI:10.26914 /c.cnkihy. 2024.000088.
    [26] 张国琴, 吴玉蓉. 基于GPS校准晶振的高精度时钟的设计[J]. 仪表技术, 2010(04): 23–24+27. doi: 10.19432/j.cnki.issn1006-2394.2010.04.008.

    Zhang Guoqin, Wu Yurong. Design of High Precision Clock Based on the GPS Disciplined Oscillator[J]. Instrumentation Technology, 2010(04): 23–24+27. doi: 10.19432/j.cnki.issn1006-2394.2010.04.008.
    [27] WILLNER A N, LIAO P, ZOU K, et al. Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb[J]. Optics Letters, 2018, 43(22): 5563–5566. doi: 10.1364/OL.43.005563.
    [28] 刘典, 汤新民. 基于分布式授时的多点定位接收机设计[J]. 测控技术, 2023, 42(08): 76–82. doi: 10.19708/j.ckjs.2023.08.012.

    LIU Dian, TANG Xinmin. Design of Multi-Point Position Receiver Based on Distributed Timing[J]. Measurement & Control Technology, 2023, 42(08): 76–82. doi: 10.19708/j.ckjs.2023.08.012.
    [29] 宫峰勋, 第五瑶光. 低信噪比S模式信号到达时间估计联合算法[J/OL]. 北京航空航天大学学报, 1–13. [2024-05-23]. https://doi.org/10.13700/j.bh.1001-5965.2023.0027.

    Gong Fengxun, DIWU Yaoguang. Time of arrival estimation of S-mode signals under low SNR by joint algorithm[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1–13[2024-05-23]. https://doi.org/10.13700/j.bh.1001-5965.2023.0027.
    [30] 陈甲. 工业控制中PID的参数整定方法[J]. 自动化应用, 2023, 64(23): 50–52.

    CHEN Jia. Parameter Tuning Method for PID in Industrial Control[J]. Application of Automation, 2023, 64(23): 50–52.
    [31] 任宣铭, 汤新民, 刘雨生, 等. 基于INT-VSMM算法的目标航迹跟踪和外推[J/OL]. 北京航空航天大学学报, 1–17. [2024-04-22]. https://doi.org/10.13700/j.bh.1001-5965.2023.0724.

    REN Xuanming, TANG Xinmin, LIU Yusheng, et al. Target trajectory tracking and extrapolation based on the INT-VSMM algorithm[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1–17 [2024-04-22]. https://doi.org/10.13700/j. bh.1001-5965.2023.0724.
    [32] Jianhua Zhang, Feng Gao, Yang Li, et al. Simulation of multilateration system based on Chan algorithm and conjugate gradient optimization algorithm[J]. International Journal of Simulation and Process Modelling, 2019, 14(5).
    [33] R. Zhou, H. Sun, H. Li and W. Luo, Time-difference-of-arrival Location Method of UAV Swarms Based on Chan-Taylor[C]. 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 2020, pp. 1161-1166, doi: 10.1109/ICUS50048.2020.9274877.
    [34] 陈思涵. 基于Fang算法的TDOA室内定位技术[J]. 太赫兹科学与电子信息学报, 2017, 15(5): 752. doi: 10.11805/TKYDA201705.0752.

    CHEN Sihan. TDOA indoor location technology based on Fang algorithm[J]. Journal of terahertz science and electronic information technology, 2017, 15(5): 752. doi: 10.11805/TKYDA201705.0752.
    [35] 邱志豪. 场面和广域多点定位系统技术要求的差异性阐述[J]. 科教导刊(下旬), 2017(21): 35–36. DOI:10.16400 / j. cnki. Kjd kx.2017.07.017. doi: 10.16400/j.cnki.Kjdkx.2017.07.017.

    QIU ZhiHao. Explaining the Differences of Technical Requirement between MLAT and WAM[J]. Disciplines Exploration, 2017(21): 35–36. DOI:10.16400/j. cnki.kjdkx. 2017. 07.017. doi: 10.16400/j.cnki.Kjdkx.2017.07.017.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  50
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-29
  • 修回日期:  2025-05-09
  • 网络出版日期:  2025-05-14
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回