高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向旋转机械多传感器故障诊断的模态融合深度聚类方法

伍章俊 许仁礼 方刚 邵海东

伍章俊, 许仁礼, 方刚, 邵海东. 一种面向旋转机械多传感器故障诊断的模态融合深度聚类方法[J]. 电子与信息学报. doi: 10.11999/JEIT240648
引用本文: 伍章俊, 许仁礼, 方刚, 邵海东. 一种面向旋转机械多传感器故障诊断的模态融合深度聚类方法[J]. 电子与信息学报. doi: 10.11999/JEIT240648
WU Zhangjun, XU Renli, FANG Gang, SHAO Haidong. A Modal Fusion Deep Clustering Method for Multi-Sensor Fault Diagnosis of Rotating Machinery[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240648
Citation: WU Zhangjun, XU Renli, FANG Gang, SHAO Haidong. A Modal Fusion Deep Clustering Method for Multi-Sensor Fault Diagnosis of Rotating Machinery[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240648

一种面向旋转机械多传感器故障诊断的模态融合深度聚类方法

doi: 10.11999/JEIT240648
基金项目: 国家自然科学基金(52275104),湖南省创新平台与人才计划(2023RC3097)
详细信息
    作者简介:

    伍章俊:男,博士,副教授,硕士生导师,研究方向为机器学习与预防性维护

    许仁礼:男,硕士生,研究方向为故障诊断与无监督学习

    方刚:男,硕士生,研究方向为图神经网络与半监督学习

    邵海东:男,博士,副教授,博士生导师,研究方向为故障诊断与智能运维、数据挖掘与信息融合

    通讯作者:

    邵海东 hdshao@hnu.edu.cn

  • 中图分类号: TN911.7; TH133; TP183

A Modal Fusion Deep Clustering Method for Multi-Sensor Fault Diagnosis of Rotating Machinery

Funds: The National Natural Science Foundation of China (52275104), Hunan Province Innovation Platform and Talent Plan Project (2023RC3097)
  • 摘要: 针对单传感器和单模态信号特征信息不足的问题,该文提出一种基于多模态融合的端到端深度聚类旋转机械多传感器故障诊断方法(EDCM-MFF)。首先,利用门控递归单元自编码模块提取多传感器故障信号的深度时序特征。然后,应用短时傅里叶变换(STFT)将故障信号转换为时频图像,并通过卷积自编码器提取这些图像的深度空间特征。接着,设计了一种模态融合注意力机制,通过计算不同模态深度特征之间的亲和矩阵,实现模态特征的融合。最后,采用Kullback-Leibler(KL)散度聚类,以端到端方式实现故障类型的识别。实验结果显示,该方法在东南大学齿轮箱和轴承数据集上的识别准确率分别为99.16%和98.63%。与现有的无监督学习方法相比,所提方法能够更有效地实现多传感器和多模态的旋转机械故障诊断。
  • 图  1  EDCM-MFF方法框架图

    图  2  时序特征提取模块结构图

    图  3  空间特征提取模块结构图

    图  4  多模态特征融合模块结构图

    图  5  不同模态的ACC、NMI和ARI

    图  6  MFF 中不同时间步的权重可视化结果

    图  7  MFF中不同传感器的权重可视化结果

    图  8  基于不同深度特征维度的ACC, NMI和ARI

    图  9  基于不同聚类损失权重系数的ACC, NMI和ARI

    图  10  EDCM-MFF消融实验的ACC、NMI和ARI

    图  11  融合特征可视化结果

    1  EDCM-MFF的算法流程

     输入:多传感器信号数据$ {{\boldsymbol{X}}^{\rm S}} $;
        多传感器时频图像数据$ {{\boldsymbol{X}}^{\rm{I}}} $;
        聚类质心数目$K$;
        聚类损失的权重系数$\lambda $。
     预训练:
       根据式(10)和式(15)对特征提取模块的GRU-AE和CAE进行
       预训练;
       根据式(16)–式(18)计算${{\boldsymbol{Z}}^{\mathrm{F}}}$;
       使用K-Means初始化聚类质心$ {\boldsymbol{{\mu}} _j}(j = 1,2,\cdots,K) $。
     微调:
      For iter = 1, 2, ···, MAXITER do
        根据式(16)–式(18)计算${{\boldsymbol{Z}}^{\mathrm{F}}}$;
        根据式(19)计算${{\boldsymbol{Q}}^{\mathrm{F}}}$;
        根据式(20)计算${{\boldsymbol{P}}^{\mathrm{F}}}$;
        根据式(23)更新整个网络参数。
      End for
      For iter = 1, 2, ···, N do //N为样本数
        根据式(22)计算第$i$个多传感器数据样本的聚类分配。
      End for
     输出:聚类分配$ y \in {\mathbb{R}^N} $。
    下载: 导出CSV

    表  1  齿轮箱和轴承数据集

    数据集样本数量状态类型描述
    G_data1022×2健康、齿面磨损、根部裂纹、断齿、缺损
    B_data1022×2健康、外圈故障、内圈故障、
    复合故障、滚珠故障
    下载: 导出CSV

    表  2  实验参数设置说明表

    方法 参数
    K-Means 迭代次数:20;簇的数目:5
    AE+K-Means 编码器网络层数:3;解码器网络层数:3;深度特征维度:10
    DEC 编码器网络层数:3;解码器网络层数:3;深度特征维度:10
    IDEC 编码器网络层数:3;解码器网络层数:3;深度特征维度:10;聚类损失权重系数$\lambda $:0.1
    DCN 编码器网络层数:3;解码器网络层数:3;深度特征维度:10;聚类损失权重系数$\lambda $:0.1
    DSC-Nets 编码器网络层数:3;解码器网络层数:3;深度特征维度:10;聚类损失权重系数${\lambda _1}$:1.0;正则化损失权重系数${\lambda _2}$:0.01
    MvDSCN 编码器网络层数:3;解码器网络层数:3;深度特征维度:10;聚类损失权重系数${\lambda _1}$:0.01;lp范数正则化损失权重系数${\lambda _2}$:1.0;共同性正则化损失权重系数${\lambda _3}$:0.1;差异性正则化损失权重系数${\lambda _4}$:0.1
    AMVDSN 编码器网络层数:3;解码器网络层数:3;深度特征维度:10;聚类损失权重系数${\lambda _1}$:0.1;重构损失权重系数${\lambda _2}$:0.1;正则化损失权重系数${\lambda _3}$:0.01
    EDCM-MFF 编码器网络层数:3;解码器网络层数:3;卷积核大小(2维):7×7、5×5、3×3;时间步数目:32;深度特征维度:{10, 20, 40, 80, 160};聚类损失权重系数$\lambda $:{0.01, 0.1, 1, 10, 100, 1000}
    下载: 导出CSV

    表  3  在G_data和B_data上的ACC, NMI和ARI(%)

    方法 G_data B_data
    ACC NMI ARI ACC NMI ARI
    K-Means 79.04 85.47 75.89 76.92 85.02 73.70
    AE+K-Means 95.42 88.87 90.15 96.33 90.82 91.70
    DEC 97.56 94.14 94.86 97.59 94.41 95.05
    IDEC 97.82 94.63 95.57 97.70 94.32 95.03
    DCN 97.86 94.81 95.26 97.89 94.87 95.62
    DSC-Nets 97.80 94.55 95.53 97.56 94.17 94.73
    MvDSCN 98.64 96.80 96.87 98.15 95.23 95.86
    AMVDSN 99.08 97.05 97.71 98.53 96.06 96.43
    EDCM-MFF 99.16 97.98 98.40 98.63 96.64 97.12
    下载: 导出CSV
  • [1] 王玉静, 康守强, 张云, 等. 基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法[J]. 电子与信息学报, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.

    WANG Yujing, KANG Shouqiang, ZHANG Yun, et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics & Information Technology, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.
    [2] 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715.

    WEN Chenglin and LÜ Feiya. Review on deep learning based fault diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715.
    [3] 邵海东, 肖一鸣, 邓乾旺, 等. 基于不确定性感知网络的可信机械故障诊断[J]. 机械工程学报, 2024, 60(12): 194–206. doi: 10.3901/JME.2024.12.194.

    SHAO Haidong, XIAO Yiming, DENG Qianwang, et al. Trustworthy mechanical fault diagnosis using uncertainty-aware network[J]. Journal of Mechanical Engineering, 2024, 60(12): 194–206. doi: 10.3901/JME.2024.12.194.
    [4] 康守强, 杨佳轩, 王玉静, 等. 基于改进宽度模型迁移学习的不同负载下滚动轴承状态快速分类方法[J]. 电子与信息学报, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT220401.

    KANG Shouqiang, YANG Jiaxuan, WANG Yujing, et al. A fast classification method of rolling bearing state under different loads based on improved broad model transfer learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT220401.
    [5] 邵海东, 颜深, 肖一鸣, 等. 时变转速下基于改进图注意力网络的轴承半监督故障诊断[J]. 电子与信息学报, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.

    SHAO Haidong, YAN Shen, XIAO Yiming, et al. Semi-supervised bearing fault diagnosis using improved graph attention network under time-varying speeds[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.
    [6] 孙瑾铃, 张伟涛, 楼顺天. 基于等变化自适应源分离算法的滚动轴承故障信号自适应盲提取[J]. 电子与信息学报, 2020, 42(10): 2471–2477. doi: 10.11999/JEJT190722.

    SUN Jinling, ZHANG Weitao, and LOU Shuntian. Adaptive blind extraction of rolling bearing fault signal based on equivariant adaptive separation via independence[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2471–2477. doi: 10.11999/JEJT190722.
    [7] 邵海东, 林健, 闵志闪, 等. 分布外样本干扰下基于改进半监督原型网络的齿轮箱跨域故障诊断[J]. 机械工程学报, 2024, 60(4): 212–221. doi: 10.3901/JME.2024.04.212.

    SHAO Haidong, LIN Jian, MIN Zhishan, et al. Improved semi-supervised prototype network for cross-domain fault diagnosis of gearbox under out-of-distribution interference samples[J]. Journal of Mechanical Engineering, 2024, 60(4): 212–221. doi: 10.3901/JME.2024.04.212.
    [8] XIAO Yiming, SHAO Haidong, HAN Songyu, et al. Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5254–5263. doi: 10.1109/TMECH.2022.3177174.
    [9] 解骞, 徐浩岚, 王彤, 等. 基于自主认知深度时间聚类表示的隔离开关故障诊断方法[J]. 电气工程学报, 2024, 19(1): 281–289. doi: 10.11985/2024.01.030.

    XIE Qian, XU Haolan, WANG Tong, et al. Disconnector fault diagnosis method based on autonomous-cognition deep temporal clustering representation[J]. Journal of Electrical Engineering, 2024, 19(1): 281–289. doi: 10.11985/2024.01.030.
    [10] LI Xiang, LI Xu, and MA Hui. Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery[J]. Mechanical Systems and Signal Processing, 2020, 143: 106825. doi: 10.1016/j.ymssp.2020.106825.
    [11] LIU Yongjie, DING Kun, ZHANG Jingwei, et al. Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with I-V curves[J]. Energy Conversion and Management, 2021, 245: 114603. doi: 10.1016/j.enconman.2021.114603.
    [12] YU Jianbo and YAN Xuefeng. Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information[J]. Applied Soft Computing, 2020, 95: 106525. doi: 10.1016/j.asoc.2020.106525.
    [13] ZHAO Bo, ZHANG Xianmin, WU Qiqiang, et al. A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines[J]. Mechanical Systems and Signal Processing, 2023, 183: 109615. doi: 10.1016/j.ymssp.2022.109615.
    [14] REN Yazhou, PU Jingyu, YANG Zhimeng, et al. Deep clustering: A comprehensive survey[EB/OL]. https://arxiv.org/abs/2210.04142, 2022.
    [15] IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622: 178–210. doi: 10.1016/j.ins.2022.11.139.
    [16] XIE Junyuan, GIRSHICK R, and FARHADI A. Unsupervised deep embedding for clustering analysis[C]. Proceedings of the 33rd International Conference on Machine Learning, New York City, USA, 2016: 478–487.
    [17] GUO Xifeng, GAO Long, LIU Xingwang, et al. Improved deep embedded clustering with local structure preservation[C]. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 1753–1759. doi: 10.24963/ijcai.2017/243.
    [18] WU Zhangjun, FANG Gang, WANG Yifei, et al. An end-to-end deep clustering method with consistency and complementarity attention mechanism for multisensor fault diagnosis[J]. Applied Soft Computing, 2024, 158: 111594. doi: 10.1016/j.asoc.2024.111594.
    [19] WANG Kejun, WANG Wenqing, ZHAO Yabo, et al. Multisensor fault diagnosis via Markov chain and evidence theory[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106851. doi: 10.1016/j.engappai.2023.106851.
    [20] MAN Jie, DONG Honghui, JIA Limin, et al. AttGGCN model: A novel multi-sensor fault diagnosis method for high-speed train bogie[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19511–19522. doi: 10.1109/TITS.2022.3156281.
    [21] TONG Jinyu, LIU Cang, ZHENG Jinde, et al. Multi-sensor information fusion and coordinate attention-based fault diagnosis method and its interpretability research[J]. Engineering Applications of Artificial Intelligence, 2023, 124: 106614. doi: 10.1016/j.engappai.2023.106614.
    [22] CUI Jian, XIE Ping, WANG Xiao, et al. M2FN: An end-to-end multi-task and multi-sensor fusion network for intelligent fault diagnosis[J]. Measurement, 2022, 204: 112085. doi: 10.1016/j.measurement.2022.112085.
    [23] XU Yadong, FENG Ke, YAN Xiaoan, et al. CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery[J]. Information Fusion, 2023, 95: 1–16. doi: 10.1016/j.inffus.2023.02.012.
    [24] YANG Chaoying, LIU Jie, ZHOU Kaibo, et al. Semisupervised machine fault diagnosis fusing unsupervised graph contrastive learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 8644–8653. doi: 10.1109/TII.2022.3220847.
    [25] WANG Daichao, LI Yibin, JIA Lei, et al. Novel three-stage feature fusion method of multimodal data for bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3514710. doi: 10.1109/TIM.2021.3071232.
    [26] MA Meng, SUN Chuang, and CHEN Xuefeng. Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1137–1145. doi: 10.1109/TII.2018.2793246.
    [27] CHE Changchang, WANG Huawei, NI Xiaomei, et al. Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis[J]. Measurement, 2021, 173: 108655. doi: 10.1016/j.measurement.2020.108655.
    [28] HU Zhanxuan, WANG Yichen, NING Hailong, et al. Mutual-taught deep clustering[J]. Knowledge-Based Systems, 2023, 282: 111100. doi: 10.1016/j.knosys.2023.111100.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  22
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 修回日期:  2024-12-03
  • 网络出版日期:  2024-12-06

目录

    /

    返回文章
    返回