高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多尺度加权Retinex变压器油下图像增强

强虎 钟羽中 佃松宜

强虎, 钟羽中, 佃松宜. 多尺度加权Retinex变压器油下图像增强[J]. 电子与信息学报. doi: 10.11999/JEIT240645
引用本文: 强虎, 钟羽中, 佃松宜. 多尺度加权Retinex变压器油下图像增强[J]. 电子与信息学报. doi: 10.11999/JEIT240645
QIANG Hu, ZHONG Yuzhong, DIAN Songyi. Image Enhancement under Transformer Oil Based on Multi-Scale Weighted Retinex[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240645
Citation: QIANG Hu, ZHONG Yuzhong, DIAN Songyi. Image Enhancement under Transformer Oil Based on Multi-Scale Weighted Retinex[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240645

多尺度加权Retinex变压器油下图像增强

doi: 10.11999/JEIT240645
基金项目: 国家自然科学基金(62203314)
详细信息
    作者简介:

    强虎:男,博士生,研究方向为人工智能、计算机视觉

    钟羽中:女,副教授,研究方向为计算机视觉、图像处理

    佃松宜:男,教授,研究方向为先进控制、感知与人工智能

    通讯作者:

    佃松宜 scudiansy@scu.edu.cn

  • 中图分类号: TN911.73; TP391.41

Image Enhancement under Transformer Oil Based on Multi-Scale Weighted Retinex

Funds: The National Natural Science Foundation of China (62203314)
  • 摘要: 针对变压器油下图像存在颜色失真、亮度低和细节失真问题,该文提出一种多尺度加权Retinex变压器油下图像增强算法。首先,为了缓解变压器油下图像颜色失真问题,提出一种混合动态颜色通道补偿算法,根据拍摄图像各通道的衰减状态对衰减通道进行动态补偿。然后,为了解决细节失真问题,提出一种锐化权重加权策略。最后,该文创新性采用金字塔多尺度融合策略对不同尺度Retinex反射分量和相应权重图进行加权融合得到变压器油下清晰图像。实验结果表明所提算法可以有效解决变压器油下图像复杂退化问题。
  • 图  1  算法流程图

    图  2  不同尺度Retinex反射分量图

    图  3  不同实验场景

    图  4  不同场景下采集的变压器油下图像

    图  5  不同算法对图4(a)增强结果

    图  6  不同算法对图4(b)增强结果

    图  7  不同算法对图4(c)增强结果

    图  8  不同子模块对变压器油下图像增强效果

    图  9  所提算法对水下退化图像增强效果

    1  混合动态颜色通道补偿

     输入:相机拍摄图像${I_{{\text{in}}}}$,增益系数$\omega $
     输出:补偿后的图像${I_{{\text{out}}}}$
     1: $B,G,R \leftarrow {\text{split}}({I_{{\text{in}}}})$
     2: ${I_{{\text{Max}}}} \leftarrow \max (R,G,B)$
     3: ${I_{{\text{Min}}}} \leftarrow \min (R,G,B)$
     4: if ${I_{{\text{Max}}}} = \bar R$
     5:  if ${I_{{\text{Min}}}} = \bar G$ then
     6:   计算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根据$ {V}_{\mathrm{min}}=G $,
        ${V_{{\text{med}}}} = B,{V_{\max }} = R$
     7:  end if
     8:  if ${I_{{\text{Min}}}} = \bar B$ then
     9:   计算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根据${V_{\min }} = B$, ${V_{{\text{med}}}} = G $,
        ${V_{\max }} = R$
     10: end if
     11: end if
     12: if ${I_{{\text{Max}}}} = \bar B$
     13: if ${I_{{\text{Min}}}} = \bar R$ then
     14:  计算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根据${V_{\min }} = R$, ${V_{{\text{med}}}} = G $,
         ${V_{\max }} = B$
     15: end if
     16: if ${I_{{\text{Min}}}} = \bar G$ then
     17:  计算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根据${V_{\min }} = G$, ${V_{{\text{med}}}} = R $,
        ${V_{\max }} = B$
     18: end if
     19: end if
     20: if ${I_{{\text{Max}}}} = \bar G$
     21: if ${I_{{\text{Min}}}} = \bar R$ then
     22:  计算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根据${V_{\min }} = R$, ${V_{{\text{med}}}} = B $,
        ${V_{\max }} = G$
     23: end if
     24: if ${I_{{\text{Min}}}} = \bar B$ then
     25:  计算${V_{{\text{com\_min}}}},{V_{{\text{com\_med}}}}$根据${V_{\min }} = B$, ${V_{{\text{med}}}} = R $,
        ${V_{\max }} = G$
     26: end if
     27: end if
     28: ${I_{{\text{out}}}} \leftarrow {\text{merge}}(\bar B,\bar G,\bar R)$
     29: return ${I_{{\text{out}}}}$
    下载: 导出CSV

    表  1  UIQM, FUDM和NIQE无参考图像质量评估结果

    指标方法
    原图UCMUDCPIBLAULAPWater-NetShallow-UWnetUDnet本文
    UIQM1.4761.9431.4172.1441.3792.2721.2731.8803.265
    FDUM0.1840.2240.2290.2980.2940.2490.1870.1830.379
    NIQE5.0214.8645.3155.7144.8154.8595.2404.7544.681
    下载: 导出CSV

    表  2  不同模块消融实验

    HCC DW PF UIQM FDUM NIQE
    1.476 0.184 5.021
    1.508 0.206 4.982
    2.965 0.283 4.630
    3.112 0.343 4.501
    3.265 0.379 4.681
    下载: 导出CSV
  • [1] JHA M and BHANDARI A K. CBLA: Color balanced locally adjustable underwater image enhancement[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5020911. doi: 10.1109/TIM.2024.3396850.
    [2] ZHANG Dehuan, WU Chenyu, ZHOU Jingchun, et al. Robust underwater image enhancement with cascaded multi-level sub-networks and triple attention mechanism[J]. Neural Networks, 2024, 169: 685–697. doi: 10.1016/j.neunet.2023.11.008.
    [3] YANG H Y, CHEN Peiyin, HUANG C C, et al. Low complexity underwater image enhancement based on dark channel prior[C]. Proceedings of 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, Shenzhen, China, 2011: 17–20. doi: 10.1109/IBICA.2011.9.
    [4] QIANG Hu, ZHONG Yuzhong, ZHU Yuqi, et al. Underwater image enhancement based on multichannel adaptive compensation[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5014810. doi: 10.1109/TIM.2024.3378290.
    [5] DREWS JR P, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images[C]. Proceedings of 2013 IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2013: 825–830. doi: 10.1109/ICCVW.2013.113.
    [6] SONG Wei, WANG Yan, HUANG Dongmei, et al. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration[C]. Proceedings of the 19th Pacific-Rim Conference on Multimedia on Advances in Multimedia Information Processing – PCM 2018, Hefei, China, 2018: 678–688. doi: 10.1007/978-3-030-00776-8_62.
    [7] ZHANG Song, ZHAO Shili, AN Dong, et al. LiteEnhanceNet: A lightweight network for real-time single underwater image enhancement[J]. Expert Systems with Applications, 2024, 240: 122546. doi: 10.1016/j.eswa.2023.122546.
    [8] WANG Zhengyong, SHEN Liquan, XU Mai, et al. Domain adaptation for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2023, 32: 1442–1457. doi: 10.1109/TIP.2023.3244647.
    [9] 米泽田, 晋洁, 李圆圆, 等. 基于多尺度级联网络的水下图像增强方法[J]. 电子与信息学报, 2022, 44(10): 3353–3362. doi: 10.11999/JEIT220375.

    MI Zetian, JIN Jie, LI Yuanyuan, et al. Underwater image enhancement method based on multi-scale cascade network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3353–3362. doi: 10.11999/JEIT220375.
    [10] LI Chongyi, ANWAR S, and PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038. doi: 10.1016/j.patcog.2019.107038.
    [11] RAO Yuan, LIU Wenjie, LI Kunqian, et al. Deep color compensation for generalized underwater image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2577–2590. doi: 10.1109/TCSVT.2023.3305777.
    [12] WANG Keyan, HU Yan, CHEN Jun, et al. Underwater image restoration based on a parallel convolutional neural network[J]. Remote Sensing, 2019, 11(13): 1591. doi: 10.3390/rs11131591.
    [13] WU Shengcong, LUO Ting, JIANG Gangyi, et al. A two-stage underwater enhancement network based on structure decomposition and characteristics of underwater imaging[J]. IEEE Journal of Oceanic Engineering, 2021, 46(4): 1213–1227. doi: 10.1109/JOE.2021.3064093.
    [14] BUCHSBAUM G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 1980, 310(1): 1–26. doi: 10.1016/0016-0032(80)90058-7.
    [15] LAND E H and MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1–11. doi: 10.1364/JOSA.61.000001.
    [16] JOBSON D J, RAHMAN Z, and WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451–462. doi: 10.1109/83.557356.
    [17] RAHMAN Z, JOBSON D J, and WOODELL G A. Multi-scale retinex for color image enhancement[C]. Proceedings of the 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 1996: 1003–1006. doi: 10.1109/ICIP.1996.560995.
    [18] PANETTA K, GAO Chen, and AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541–551. doi: 10.1109/JOE.2015.2469915.
    [19] YANG Ning, ZHONG Qihang, LI Kun, et al. A reference-free underwater image quality assessment metric in frequency domain[J]. Signal Processing: Image Communication, 2021, 94: 116218. doi: 10.1016/j.image.2021.116218.
    [20] MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726.
    [21] IQBAL K, ODETAYO M, JAMES A, et al. Enhancing the low quality images using unsupervised colour correction method[C]. Proceedings of 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 2010: 1703–1709. doi: 10.1109/ICSMC.2010.5642311.
    [22] PENG Y T and COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594. doi: 10.1109/TIP.2017.2663846.
    [23] LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376–4389. doi: 10.1109/TIP.2019.2955241.
    [24] NAIK A, SWARNAKAR A, and MITTAL K. Shallow-UWnet: Compressed model for underwater image enhancement (student abstract)[C]. Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 15853–15854. doi: 10.1609/aaai.v35i18.17923.
    [25] SALEH A, SHEAVES M, JERRY D, et al. Adaptive uncertainty distribution in deep learning for unsupervised underwater image enhancement[J]. arXiv preprint arXiv: 2212.08983, 2022. (查阅网上资料, 不确定文献类型及格式是否正确, 请确认) .
    [26] LIU Risheng, FAN Xin, ZHU Ming, et al. Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(12): 4861–4875. doi: 10.1109/TCSVT.2019.2963772.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  9
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-11-08
  • 网络出版日期:  2024-11-13

目录

    /

    返回文章
    返回