高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主动波导不变量分布的改进扩展卡尔曼滤波跟踪方法

孙同晶 朱庆煜 王治撰

孙同晶, 朱庆煜, 王治撰. 基于主动波导不变量分布的改进扩展卡尔曼滤波跟踪方法[J]. 电子与信息学报. doi: 10.11999/JEIT240595
引用本文: 孙同晶, 朱庆煜, 王治撰. 基于主动波导不变量分布的改进扩展卡尔曼滤波跟踪方法[J]. 电子与信息学报. doi: 10.11999/JEIT240595
SUN Tongjing, ZHU Qingyu, WANG Zhizhuan. Improved Extended Kalman Filter Tracking Method Based On Active Waveguide Invariant Distribution[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240595
Citation: SUN Tongjing, ZHU Qingyu, WANG Zhizhuan. Improved Extended Kalman Filter Tracking Method Based On Active Waveguide Invariant Distribution[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240595

基于主动波导不变量分布的改进扩展卡尔曼滤波跟踪方法

doi: 10.11999/JEIT240595
基金项目: 国家自然科学基金联合基金(U22A2044)
详细信息
    作者简介:

    孙同晶:女,博士,教授,研究方向为信号处理,信息融合,目标定位和跟踪

    朱庆煜:男,硕士生,研究方向为信号处理和模式识别

    王治撰:男,博士生,高级工程师,研究方向为水下目标回波特性和海洋环境特性研究

    通讯作者:

    王治撰 15142594278@163.com

  • 中图分类号: TN011.6

Improved Extended Kalman Filter Tracking Method Based On Active Waveguide Invariant Distribution

Funds: The Joint Fund of National Natural Science Foundation of China (U22A2044)
  • 摘要: 在复杂的海洋环境中,目标的可知信息受环境噪声、混响等的干扰严重,导致目标跟踪效果较差,而从这些干扰中提取目标的可利用特征及其困难。该文将目标与环境的耦合特征融入目标跟踪算法中,提出了一种基于主动波导不变量分布的改进扩展卡尔曼滤波跟踪方法。首先基于浅海波导中目标散射特性基本理论,推导了收发分置条件下的主动波导不变量表征的数学模型,获得了距离、频率以及主动波导不变量分布的约束关系;然后将该约束加入到扩展卡尔曼滤波的状态向量中,通过增加新的约束来提高目标运动模型与真实目标运动轨迹的契合度进而提高目标跟踪的精度;最后通过仿真实验和实测数据验证了该方法的跟踪性能,结果显示:该方法较常规扩展卡尔曼滤波跟踪方法能够更好地提高目标跟踪精度,仿真中结果的优化率约能达到50%,实测数据处理结果的优化率约在60%左右。
  • 图  1  主动声呐工作模式

    图  2  仿真条纹与运动轨迹对比

    图  3  仿真工况

    图  4  基于仿真模型的目标跟踪实现流程

    图  5  仿真的声场干涉条纹图

    图  6  Radon变换过程

    图  7  主动波导不变量分布图

    图  8  仿真结果

    图  9  试验布放及工况

    图  10  声场干涉条纹结果图

    图  11  截取条纹图的$\gamma $分布的提取过程

    图  12  试验结果

    表  1  3种算法仿真的估计位置与真值误差表(m)

    算法名称估计位置和真值偏差-均值估计位置和真值偏差-峰值
    EKF0.190.25
    IEKF0.130.19
    ID-EKF0.090.13
    下载: 导出CSV

    表  2  算法仿真对比优化表(%)

    算法对比名称均值优化率峰值优化率
    IEKF相对EKF31.5824.00
    ID-EKF相对EKF52.6348.00
    ID-EKF相对IEKF30.7731.58
    下载: 导出CSV

    表  3  测试参数及目标

    信号参数目标及其运动状态
    信号形式频率(kHz)脉冲间隔(ms)脉宽(ms)采样率(kHz)球体目标模型(1.2 m直径),由近及远运动
    LFM40~804005512
    下载: 导出CSV

    表  4  3种算法试验的估计位置与真值误差表(m)

    算法名称估计位置和真值偏差-均值估计位置和真值偏差-峰值
    EKF0.1950.256
    IEKF0.1420.187
    ID-EKF0.0790.095
    下载: 导出CSV

    表  5  算法试验对比优化表(%)

    算法对比名称均值优化率峰值优化率
    IEKF相对EKF27.17926.953
    ID-EKF相对EKF59.48762.891
    ID-EKF相对IEKF44.36649.197
    下载: 导出CSV
  • [1] 郭戈, 王兴凯, 徐慧朴. 基于声呐图像的水下目标检测、识别与跟踪研究综述[J]. 控制与决策, 2018, 33(5): 906–922. doi: 10.13195/j.kzyjc.2017.1678.

    GUO Ge, WANG Xingkai, and XU Huipu. Review on underwater target detection, recognition and tracking based on sonar image[J]. Control and Decision, 2018, 33(5): 906–922. doi: 10.13195/j.kzyjc.2017.1678.
    [2] KALMAN R E and BUCY R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering, 1961, 83(1): 95–108. doi: 10.1115/1.3658902.
    [3] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35–45. doi: 10.1115/1.3662552.
    [4] LI Tiancheng, SU Jinya, LIU Wei, et al. Approximate Gaussian conjugacy: Parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(12): 1913–1939. doi: 10.1631/FITEE.1700379.
    [5] 周云, 胡锦楠, 赵瑜, 等. 基于卡尔曼滤波改进压缩感知算法的车辆目标跟踪[J]. 湖南大学学报: 自然科学版, 2023, 50(1): 11–21. doi: 10.16339/j.cnki.hdxbzkb.2023002.

    ZHOU Yun, HU Jinnan, ZHAO Yu, et al. Vehicle target tracking based on Kalman filtering improved compressed sensing algorithm[J]. Journal of Hunan University: Natural Sciences, 2023, 50(1): 11–21. doi: 10.16339/j.cnki.hdxbzkb.2023002.
    [6] 白冬杰. 车载毫米波雷达多目标跟踪算法研究[D]. [硕士论文], 北京交通大学, 2019.

    BAI Dongjie. Research on multi-target tracking algorithm of vehicle-mounted millimeter-wave radar[D]. [Master dissertation], Beijing Jiaotong University, 2019.
    [7] 吴叶丽, 行鸿彦, 侯天浩, 等. 基于改进自适应扩展卡尔曼滤波的高精度姿态解算[J]. 探测与控制学报, 2023, 45(6): 69–76.

    WU Yeli, XiNG Hongyan, HOU Tianhao, et al. An improved adaptive extended Kalman filter for high precision attitude solution[J]. Journal of Detection & Control, 2023, 45(6): 69–76.
    [8] 成春彦, 李亚安. EKF和UKF算法在双观测站纯方位目标跟踪中的应用[J]. 水下无人系统学报, 2023, 31(3): 388–397. doi: 10.11993/j.issn.2096-3920.202203014.

    CHENG Chunyan and LI Yaan. Applications of EKF and UKF algorithms in bearings-only target tracking with a double observation stations[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 388–397. doi: 10.11993/j.issn.2096-3920.202203014.
    [9] 丁凯. 基于前视声纳的水下目标跟踪技术研究[D]. [硕士论文], 哈尔滨工程大学, 2006. doi: 10.7666/d.y936424.

    DING Kai. Research on tracking of underwater object based on forward-looking sonar[D]. [Master dissertation], Harbin Engineering University, 2006. doi: 10.7666/d.y936424.
    [10] CHUPROV S D. Interference structure of a sound field in a layered ocean[M]. BREKHOVSKIKH L M and ANDREEVOI L B. Ocean Acoustics: Current State. Moscow: Nauka, 1982: 71–91.
    [11] BROOKS L A, KIDNER M R F, ZANDER A C, et al. Techniques for extraction of the waveguide invariant from interference patterns in spectrograms[C]. Proceedings of ACOUSTICS 2006, Christchurch, New Zealand, 2006: 445.
    [12] SELL A W and LEE CULVER R. Waveguide invariant analysis for modeling time-frequency striations in a range-dependent environment[J]. The Journal of the Acoustical Society of America, 2011, 129(S4): 2509. doi: 10.1121/1.3588287.
    [13] TURGUT A, ORR M, and ROUSEFF D. Broadband source localization using horizontal-beam acoustic intensity striations[J]. The Journal of the Acoustical Society of America, 2010, 127(1): 73–83. doi: 10.1121/1.3257211.
    [14] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建[J]. 物理学报, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932.

    LI Yongfei, GUO Ruiming, and ZHAO Hangfang. Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment[J]. Acta Physica Sinica, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932.
    [15] 余赟, 惠俊英, 殷敬伟, 等. 基于波导不变量的目标运动参数估计及被动测距[J]. 声学学报, 2011, 36(3): 258–264. doi: 10.15949/j.cnki.0371-0025.2011.03.015.

    YU Yun, HUI Junying, YIN Jingwei, et al. Moving target parameter estimation and passive ranging based on waveguide invariant theory[J]. Acta Acustica, 2011, 36(3): 258–264. doi: 10.15949/j.cnki.0371-0025.2011.03.015.
    [16] 宋雪晶. 基于声场干涉结构的水声目标被动定位技术[D]. [博士论文], 哈尔滨工程大学, 2017.

    SONG Xuejing. Underwater acoustic target passive localization techniques based on acoustic field interference structure[D]. [Ph. D. dissertation], Harbin Engineering University, 2017.
    [17] QUIJANO J E, ZURK L M, and ROUSEFF D. Demonstration of the invariance principle for active sonar[J]. The Journal of the Acoustical Society of America, 2008, 123(3): 1329–1337. doi: 10.1121/1.2836763.
    [18] QUIJANO J E, CAMPBELL R L JR, OESTERLEIN T G, et al. Experimental observations of active invariance striations in a tank environment[J]. The Journal of the Acoustical Society of America, 2010, 128(2): 611–618. doi: 10.1121/1.3455813.
    [19] ZURK L M and ROUSEFF D. Striation-based beamforming for active sonar with a horizontal line array[J]. The Journal of the Acoustical Society of America, 2012, 132(4): EL264–EL270. doi: 10.1121/1.4748281.
    [20] HE Chensong, QUIJANO J E, and ZURK L M. Enhanced Kalman filter algorithm using the invariance principle[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 575–585. doi: 10.1109/joe.2009.2028058.
    [21] 芬恩·B·延森, 威廉·A·库珀曼, 米切尔·B·波特, 等, 周利生, 王鲁军, 杜栓平, 译. 计算海洋声学[M]. 2版. 北京: 国防工业出版社, 2018: 54–57, 267–269.

    JENSEN F B, KUPERMAN W A, POTER M B, et al, ZHOU Lisheng, WANG Lujun, and DU Shuanping. translation. Computational Ocean Acoustics[M]. 2nd ed. Beijing: National Defense Industry Press, 2018: 54–57, 267–269.
    [22] 林萌, 李翠华, 黄剑航. 基于Radon变换的运动模糊图像参数估计[J]. 计算机技术与发展, 2008, 18(1): 33–36. doi: 10.3969/j.issn.1673-629X.2008.01.009.

    LIN Meng, LI Cuihua, and HUANG Jianhang. Parameters estimation of motion blurred images based on radon transform[J]. Computer Technology and Development, 2008, 18(1): 33–36. doi: 10.3969/j.issn.1673-629X.2008.01.009.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-12-04
  • 网络出版日期:  2024-12-07

目录

    /

    返回文章
    返回