高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G工业物联网的联邦学习:从需求、愿景到挑战、机遇

刘淼 夏雨虹 赵海涛 郭亮 施政 朱洪波

刘淼, 夏雨虹, 赵海涛, 郭亮, 施政, 朱洪波. 面向6G工业物联网的联邦学习:从需求、愿景到挑战、机遇[J]. 电子与信息学报. doi: 10.11999/JEIT240574
引用本文: 刘淼, 夏雨虹, 赵海涛, 郭亮, 施政, 朱洪波. 面向6G工业物联网的联邦学习:从需求、愿景到挑战、机遇[J]. 电子与信息学报. doi: 10.11999/JEIT240574
LIU Miao, XIA Yuhong, ZHAO Haitao, GUO Liang, SHI Zheng, ZHU Hongbo. Federated Learning Technologies for 6G Industrial Internet of Things: From Requirements, Vision to Challenges, Opportunities[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240574
Citation: LIU Miao, XIA Yuhong, ZHAO Haitao, GUO Liang, SHI Zheng, ZHU Hongbo. Federated Learning Technologies for 6G Industrial Internet of Things: From Requirements, Vision to Challenges, Opportunities[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240574

面向6G工业物联网的联邦学习:从需求、愿景到挑战、机遇

doi: 10.11999/JEIT240574
基金项目: 新一代人工智能国家科技重大专项(2021ZD0113003)
详细信息
    作者简介:

    刘淼:男,博士,讲师,硕导,研究方向为认知无线网络、智能车联网、异构物联网、雾无线接入网、非正交多址技术、无人机通信、B5G/6G理论、基于模型驱动的深度学习技术等

    夏雨虹:男,硕士生,研究方向为联邦学习、工业物联网、边缘计算等

    赵海涛:男,博士,教授,博导,研究方向为智能网络技术、多信道建模技术、物联网、边缘计算等

    郭亮:男,博士,正高级工程师,研究方向为网络、计算和存储等算力相关的研究和支撑工作

    施政:男,博士,副教授,硕导,研究方向为可见光通信、半导体信息器件等

    朱洪波:男,博士,教授,博导,研究方向为移动通信与宽带无线技术、无线通信与电磁兼容

    通讯作者:

    赵海涛 zhaoht@njupt.edu.cn

  • 中图分类号: TN92

Federated Learning Technologies for 6G Industrial Internet of Things: From Requirements, Vision to Challenges, Opportunities

Funds: The National Science and Technology Major Project(2021ZD0113003)
  • 摘要: 随着6G技术的蓬勃发展和工业物联网的不断演进,联邦学习在工业领域的应用备受关注。因此,该文专注于探讨6G推动下工业物联网中联邦学习的发展与应用潜力,分析6G在工业物联网的应用前景,探索如何结合6G特性利用联邦学习技术满足数据隐私保护、资源优化和智能决策需求。首先,调研总结了现有相关工作,提出了联邦学习技术面向6G工业物联网应用场景的发展需求与愿景。在此基础上,构建了一种基于分层跨域架构的工业联邦学习新范式,旨在融合6G与数字孪生技术赋能实现泛在、灵活、层次化的联邦学习,以支撑典型工业物联网场景中按需、可靠的分布式智能业务,实现运营信息通信技术(OCIT)的融合。其次,分析归纳了面向6G工业物联网的联邦学习(6G IIoT-FL)可能面临的研究挑战,并提出了潜在的解决方案或建议。最后,指出了该技术未来值得关注的相关方向,旨在一定程度上为后续研究开拓思路。
  • 图  1  本文组织结构

    图  2  数字孪生驱动的6G IIoT-FL融合新范式

    图  3  物理域联邦学习与孪生域联邦学习的跨域融合机制

    图  4  6G IIoT-FL的关键挑战及相应对策

    图  5  基于融合新范式的6G IIoT-FL未来研究方向

    表  1  相关工作调研

    参考文献 主题 贡献 尚未考虑
    [11] 面向6G通信技术的工业5.0和
    信息物理系统
    分析了6G技术在工业物联网和智能信息物理系统中存在的挑战与机遇,提出了相关解决方案 没有讨论联邦学习在其中的应用
    [12] 面向联邦学习的工业物联网 具体介绍了无线联邦学习在工业物联网中的应用场景和方法,并分析了其优势和局限性 没有涉及6G技术部分的探讨
    [13] 面向联邦学习的工业物联网 讨论了无线联邦学习和工业物联网的融合应用,包括架构、算法和安全等方面,为实现6G无线联邦学习
    技术提供基础
    没有重点讨论6G无线联邦学习技术
    [14] 面向联邦学习的工业物联网 对联邦学习在工业物联网状态监测中的应用进行了
    全面的综述
    未涉及6G网络的发展及其对联邦学习和工业过程状态监测的潜在影响
    [15] 面向6G通信技术的联邦学习 分析了在6G通信场景下,如何利用无线联邦学习解决数据隐私和安全等问题,并探讨了未来发展方向 缺少讨论具体工业物联网应用场景
    下载: 导出CSV
  • [1] MUMTAZ S, BO A, AL-DULAIMI A, et al. Guest editorial 5G and beyond mobile technologies and applications for industrial IoT (IIoT)[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2588–2591. doi: 10.1109/TII.2018.2823311.
    [2] LU Yang and ZHENG Xianrong. 6G: A survey on technologies, scenarios, challenges, and the related issues[J]. Journal of Industrial Information Integration, 2020, 19: 100158. doi: 10.1016/j.jii.2020.100158.
    [3] GUI Guan, LIU Miao, TANG Fengxiao, et al. 6G: Opening new horizons for integration of comfort, security, and intelligence[J]. IEEE Wireless Communications, 2020, 27(5): 126–132. doi: 10.1109/MWC.001.1900516.
    [4] LETAIEF K B, CHEN Wei, SHI Yuanming, et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57(8): 84–90. doi: 10.1109/MCOM.2019.1900271.
    [5] AMBIKA P. Machine learning and deep learning algorithms on the Industrial Internet of Things (IIoT)[J]. Advances in Computers, 2020, 117(1): 321–338. doi: 10.1016/BS.ADCOM.2019.10.007.
    [6] QVIST-SØRENSEN P. Applying IIoT and AI–Opportunities, requirements and challenges for industrial machine and equipment manufacturers to expand their services[J]. Central European Business Review, 2020, 9(2): 46–77. doi: 10.18267/j.cebr.234.
    [7] MAO Yuyi, YU Xianghao, HUANG Kaibin, et al. Green edge AI: A contemporary survey[J]. Proceedings of the IEEE, 2024, 112(7): 880–911. doi: 10.1109/JPROC.2024.3437365.
    [8] ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1323.
    [9] ZHOU Tailin, ZHANG Jun, and TSANG D H K. FedFA: Federated learning with feature anchors to align features and classifiers for heterogeneous data[J]. IEEE Transactions on Mobile Computing, 2024, 23(6): 6731–6742. doi: 10.1109/TMC.2023.3325366.
    [10] 范绍帅, 吴剑波, 田辉. 面向能量受限工业物联网设备的联邦学习资源管理[J]. 通信学报, 2022, 43(8): 65–77. doi: 10.11959/j.issn.1000−436x.2022126.

    FAN Shaoshuai, WU Jianbo, and TIAN Hui. Federated learning resource management for energy-constrained industrial IoT devices[J]. Journal on Communications, 2022, 43(8): 65–77. doi: 10.11959/j.issn.1000−436x.2022126.
    [11] BASU D, GHOSH U, and DATTA R. 6G for industry 5.0 and smart CPS: A journey from challenging hindrance to opportunistic future[C]. 2022 IEEE Silchar Subsection Conference, Silchar, India, 2022: 1–6. doi: 10.1109/SILCON55242.2022.10028927.
    [12] NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for industrial internet of things in future industries[J]. IEEE Wireless Communications, 2021, 28(6): 192–199. doi: 10.1109/MWC.001.2100102.
    [13] BOOBALAN P, RAMU S P, PHAM Q V, et al. Fusion of federated learning and industrial internet of things: A survey[J]. Computer Networks, 2022, 212: 109048. doi: 10.1016/j.comnet.2022.109048.
    [14] BERGHOUT T, BENBOUZID M, BENTRCIA T, et al. Federated learning for condition monitoring of industrial processes: A review on fault diagnosis methods, challenges, and prospects[J]. Electronics, 2022, 12(1): 158. doi: 10.3390/electronics12010158.
    [15] LIU Yi, YUAN Xingliang, XIONG Zehui, et al. Federated learning for 6G communications: Challenges, methods, and future directions[J]. China Communications, 2020, 17(9): 105–118. doi: 10.23919/JCC.2020.09.009.
    [16] GHILDIYAL Y, SINGH R, ALKHAYYAT A, et al. An imperative role of 6G communication with perspective of industry 4.0: Challenges and research directions[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103047. doi: 10.1016/j.seta.2023.103047.
    [17] ZHU Guangxu, LYU Zhonghao, JIAO Xiang, et al. Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G[J]. Science China Information Sciences, 2023, 66(3): 130301. doi: 10.1007/s11432-022-3652-2.
    [18] GONG Yongkang, YAO Haipeng, WANG Jingjing, et al. Edge intelligence-driven joint offloading and resource allocation for future 6G industrial internet of things[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(6): 5644–5655. doi 10.1109/TNSE.2022.3141728.
    [19] HIESSL T, SCHALL D, KEMNITZ J, et al. Industrial federated learning–requirements and system design[C]. The International Conference on Practical Applications of Agents and Multi-Agent Systems, L'Aquila, Italy, 2020: 42–53. doi: 10.1007/978-3-030-51999-5_4.
    [20] MAKKAR A, KIM T W, SINGH A K, et al. SecureIIoT environment: Federated learning empowered approach for securing IIoT from data breach[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6406–6414. doi: 10.1109/TII.2022.3149902.
    [21] YE Mang, FANG Xiuwen, DU Bo, et al. Heterogeneous federated learning: State-of-the-art and research challenges[J]. ACM Computing Surveys, 2024, 56(3): 79. doi: 10.1145/3625558.
    [22] TANG Fengxiao, CHEN Xuehan, RODRIGUES T K, et al. Survey on Digital Twin Edge Networks (DITEN) toward 6G[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1360–1381. doi: 10.1109/OJCOMS.2022.3197811.
    [23] LIN Xingqin, KUNDU L, DICK C, et al. 6G digital twin networks: From theory to practice[J]. IEEE Communications Magazine, 2023, 61(11): 72–78. doi: 10.1109/MCOM.001.2200830.
    [24] LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Communication-efficient federated learning for digital twin edge networks in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5709–5718. doi: 10.1109/tii.2020.3010798.
    [25] LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Communication-efficient federated learning and permissioned blockchain for digital twin edge networks[J]. IEEE Internet of Things Journal, 2021, 8(4): 2276–2288. doi: 10.1109/JIOT.2020.3015772.
    [26] PRAHARAJ L, GUPTA M, and GUPTA D. Hierarchical federated transfer learning and digital twin enhanced secure cooperative smart farming[C]. 2023 IEEE International Conference on Big Data, Sorrento, Italy, 2023: 3304–3313. doi: 10.1109/BigData59044.2023.10386345.
    [27] TAO Fei, ZHANG He, and ZHANG Chenyuan. Advancements and challenges of digital twins in industry[J]. Nature Computational Science, 2024, 4(3): 169–177. doi: 10.1038/s43588-024-00603-w.
    [28] RAMU S P, BOOPALAN P, PHAM Q V, et al. Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions[J]. Sustainable Cities and Society, 2022, 79: 103663. doi: 10.1016/j.scs.2021.103663.
    [29] GUO Jingjing, LIU Zhiquan, TIAN Siyi, et al. TFL-DT: A trust evaluation scheme for federated learning in digital twin for mobile networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(11): 3548–3560. doi: 10.1109/JSAC.2023.3310094.
    [30] HE Yejun, YANG Mengna, ZHOU He, et al. Computation offloading and resource allocation based on DT-MEC-assisted federated learning framework[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(6): 1707–1720. doi: 10.1109/TCCN.2023.3298926.
    [31] QADIR Z, LE K N, SAEED N, et al. Towards 6G Internet of Things: Recent advances, use cases, and open challenges[J]. ICT Express, 2023, 9(3): 296–312. doi: 10.1016/j.icte.2022.06.006.
    [32] QUY V K, NGUYEN D C, VAN ANH D, et al. Federated learning for green and sustainable 6G IIoT applications[J]. Internet of Things, 2024, 25: 101061. doi: 10.1016/j.iot.2024.101061.
    [33] YANG Wei, XIANG Wei, YANG Yuan, et al. Optimizing Federated Learning With Deep Reinforcement Learning for Digital Twin Empowered Industrial IoT [J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1884-1893. doi: 10.1109/TII.2022.3183465.
    [34] FARAHANI B and MONSEFI A K. Smart and collaborative industrial IoT: A federated learning and data space approach[J]. Digital Communications and Networks, 2023, 9(2): 436–447. doi: 10.1016/j.dcan.2023.01.022.
    [35] CHEN Jianrui, WANG Jingjing, JIANG Chunxiao, et al. Trustworthy semantic communications for the metaverse relying on federated learning[J]. IEEE Wireless Communications, 2023, 30(4): 18–25. doi: 10.1109/MWC.001.2200587.
    [36] OOI M P L, SOHAIL S, HUANG V G, et al. Measurement and applications: Exploring the challenges and opportunities of hierarchical federated learning in sensor applications[J]. IEEE Instrumentation & Measurement Magazine, 2023, 26(9): 21–31. doi: 10.1109/MIM.2023.10328671.
    [37] ZHU Juncen, CAO Jiannong, SAXENA D, et al. Blockchain-empowered federated learning: Challenges, solutions, and future directions[J]. ACM Computing Surveys, 2023, 55(11): 240. doi: 10.1145/3570953.
    [38] LIU Shimin, LU Yuqian, SHEN Xingwang, et al. A digital thread-driven distributed collaboration mechanism between digital twin manufacturing units[J]. Journal of Manufacturing Systems, 2023, 68: 145–159. doi: 10.1016/j.jmsy.2023.02.014.
    [39] CRONIN C, CONWAY A, and WALSH J. Flexible manufacturing systems using IIoT in the automotive sector[J]. Procedia Manufacturing, 2019, 38: 1652–1659. doi: 10.1016/j.promfg.2020.01.119.
    [40] TSAI Y H, CHANG D M, and HSU T C. Edge computing based on federated learning for machine monitoring[J]. Applied Sciences, 2022, 12(10): 5178. doi: 10.3390/app12105178.
    [41] GUO Sheng, LI Zengxiang, LIU Hui, et al. Personalized federated learning for multi-task fault diagnosis of rotating machinery[J]. arXiv preprint arXiv: 2211.09406, 2022.
    [42] CHEN Baotong, WAN Jiafu, LAN Yanting, et al. Improving cognitive ability of edge intelligent IIoT through machine learning[J]. IEEE Network, 2019, 33(5): 61–67. doi: 10.1109/MNET.001.1800505.
    [43] GUO Qi, TANG Fengxiao, and KATO N. Federated reinforcement learning-based resource allocation for D2D-aided digital twin edge networks in 6G industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7228–7236. doi: 10.1109/TII.2022.3227655.
    [44] SUN Fanglei and DIAO Zhifeng. Federated learning and blockchain-enabled intelligent manufacturing for sustainable energy production in industry 4.0[J]. Processes, 2023, 11(5): 1482. doi: 10.3390/pr11051482.
    [45] TARIQ M, ALI M, NAEEM F, et al. Vulnerability assessment of 6G-enabled smart grid cyber–physical systems[J]. IEEE Internet of Things Journal, 2021, 8(7): 5468–5475. doi: 10.1109/JIOT.2020.3042090.
    [46] BOUZINIS P S, DIAMANTOULAKIS P D, and KARAGIANNIDIS G K. Wireless federated learning (WFL) for 6G networks Part I: Research challenges and future trends[J]. IEEE Communications Letters, 2022, 26(1): 3–7. doi: 10.1109/LCOMM.2021.3121071.
    [47] CHAUDHARY R, AUJLA G S, GARG S, et al. SDN-enabled multi-attribute-based secure communication for smart grid in IIoT environment[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2629–2640. doi: 10.1109/TII.2018.2789442.
    [48] WEN Mi, XIE Rong, LU Kejie, et al. FedDetect: A novel privacy-preserving federated learning framework for energy theft detection in smart grid[J]. IEEE Internet of Things Journal, 2022, 9(8): 6069–6080. doi: 10.1109/JIOT.2021.3110784.
    [49] XIAO Lijun, HAN Dezhi, YANG Ce, et al. TS-DP: An efficient data processing algorithm for distribution digital twin grid for industry 5.0[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 1983–1994. doi: 10.1109/TCE.2023.3332099.
    [50] PÉREZ S, PÉREZ J, ARROBA P, et al. Predictive GPU-based ADAS management in energy-conscious smart cities[C]. 2019 IEEE International Smart Cities Conference, Casablanca, Morocco, 2019: 349–354. doi: 10.1109/ISC246665.2019.9071685.
    [51] TAÏK A and CHERKAOUI S. Electrical load forecasting using edge computing and federated learning[C]. The IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148937.
    [52] CAO Hui, LIU Shubo, ZHAO Renfang, et al. IFed: A novel federated learning framework for local differential privacy in power internet of things[J]. International Journal of Distributed Sensor Networks, 2020, 16(5): 1550147720919698. doi: 10.1177/1550147720919698.
    [53] BOUACHIR O, ALOQAILY M, ÖZKASAP Ö, et al. FederatedGrids: Federated learning and blockchain-assisted P2P energy sharing[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 424–436. doi: 10.1109/TGCN.2022.3140978.
    [54] SHAHID O, POURIYEH S, PARIZI R M, et al. Communication efficiency in federated learning: Achievements and challenges[J]. arXiv preprint arXiv: 2107.10996, 2021.
    [55] SHLEZINGER N, CHEN Mingzhe, ELDAR Y C, et al. Federated learning with quantization constraints[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 8851–8855. doi: 10.1109/ICASSP40776.2020.9054168.
    [56] HUANG Anbu, CHEN Yuanyuan, LIU Yang, et al. RPN: A residual pooling network for efficient federated learning[C]. Proceedings of the 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 2020: 1223–1229.
    [57] IMTEAJ A, THAKKER U, WANG Shiqiang, et al. A survey on federated learning for resource-constrained IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(1): 1–24. doi: 10.1109/JIOT.2021.3095077.
    [58] JIANG Yuang, WANG Shiqiang, VALLS V, et al. Model pruning enables efficient federated learning on edge devices[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10374–10386. doi: 10.1109/TNNLS.2022.3166101.
    [59] WU Chuhan, WU Fengzhao, LYU Lingjuan, et al. Communication-efficient federated learning via knowledge distillation[J]. Nature Communications, 2022, 13(1): 2032. doi: 10.1038/s41467-022-29763-x.
    [60] XIA Dan, JIANG Chun, WAN Jiafu, et al. Heterogeneous network access and fusion in smart factory: A survey[J]. ACM Computing Surveys, 2023, 55(6): 113. doi: 10.1145/3530815.
    [61] PRAKASH S and AVESTIMEHR A S. Mitigating byzantine attacks in federated learning[J]. arXiv preprint arXiv: 2010.07541, 2020.
    [62] XU Chenhao, QU Youyang, XIANG Yong, et al. Asynchronous federated learning on heterogeneous devices: A survey[J]. Computer Science Review, 2023, 50: 100595. doi: 10.1016/j.cosrev.2023.100595.
    [63] SUN Wen, LEI Shiyu, WANG Lu, et al. Adaptive federated learning and digital twin for industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5605–5614. doi: 10.1109/TII.2020.3034674.
    [64] ABDELMONIEM A M, SAHU A N, CANINI M, et al. REFL: Resource-efficient federated learning[C]. The Eighteenth European Conference on Computer Systems, Rome Italy, 2023: 215–232. doi: 10.1145/3552326.3567485.
    [65] CAO Mei, ZHANG Yujie, MA Zezhong, et al. C2S: Class-aware client selection for effective aggregation in federated learning[J]. High-Confidence Computing, 2022, 2(3): 100068. doi: 10.1016/j.hcc.2022.100068.
    [66] TAN A Z, HAN Yu, CUI Lizhen, et al. Towards personalized federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 9587–9603. doi: 10.1109/TNNLS.2022.3160699.
    [67] DENG Yongheng, CHEN Weining, REN Ju, et al. TailorFL: Dual-personalized federated learning under system and data heterogeneity[C]. The 20th ACM Conference on Embedded Networked Sensor Systems, Boston, USA, 2022: 592–606. doi: 10.1145/3560905.3568503.
    [68] REN Lei, LI Yingjie, WANG Xiaokang, et al. An ABGE-aided manufacturing knowledge graph construction approach for heterogeneous IIoT data integration[J]. International Journal of Production Research, 2023, 61(12): 4102–4116. doi: 10.1080/00207543.2022.2042416.
    [69] ZHANG Kai, WANG Yu, WANG Hongyi, et al. Efficient federated learning on knowledge graphs via privacy-preserving relation embedding aggregation[C]. The Findings of the Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2022: 613–621. doi: 10.18653/v1/2022.findings-emnlp.43.
    [70] ZHU Xiangrong, LI Guangyao, and HU Wei. Heterogeneous federated knowledge graph embedding learning and unlearning[C]. The ACM Web Conference 2023, Austin, USA, 2023: 2444–2454. doi: 10.1145/3543507.3583305.
    [71] EK K, PORTET F, LALANDA P, et al. A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison[C]. 2021 IEEE International Conference on Pervasive Computing and Communications, Kassel, Germany, 2021: 1–10. doi: 10.1109/PERCOM50583.2021.9439129.
    [72] SEN S, NIELSEN S M, HUSOM E J, et al. Replay-driven continual learning for the industrial internet of things[C]. The 2023 IEEE/ACM 2nd International Conference on AI Engineering–Software Engineering for AI, Melbourne, Australia, 2023: 43–55. doi: 10.1109/CAIN58948.2023.00014.
    [73] LIU Yongxin, WANG Jian, LI Jianqiang, et al. Class-incremental learning for wireless device identification in IoT[J]. IEEE Internet of Things Journal, 2021, 8(23): 17227–17235. doi: 10.1109/JIOT.2021.3078407.
    [74] JIN Zhigang, ZHOU Junyi, LI Bing, et al. FL-IIDS: A novel federated learning-based incremental intrusion detection system[J]. Future Generation Computer Systems, 2024, 151: 57–70. doi: 10.1016/j.future.2023.09.019.
    [75] JIN Hai, BAI Dongshan, YAO Dezhong, et al. Personalized edge intelligence via federated self-knowledge distillation[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(2): 567–580. doi: 10.1109/TPDS.2022.3225185.
    [76] ZHANG Yu and YANG Qiang. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5586–5609. doi: 10.1109/TKDE.2021.3070203.
    [77] WANG Bokun, YUAN Zhuoning, YING Yiming, et al. Memory-based optimization methods for model-agnostic meta-learning and personalized federated learning[J]. The Journal of Machine Learning Research, 2023, 24(1): 145.
    [78] RAO Bosen, ZHANG Jiale, WU Di, et al. Privacy inference attack and defense in centralized and federated learning: A comprehensive survey[J]. IEEE Transactions on Artificial Intelligence, 2024. doi: 10.1109/TAI.2024.3363670.
    [79] ZHAO Bin, FAN Kai, YANG Kan, et al. Anonymous and Privacy-Preserving Federated Learning With Industrial Big Data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6314-6323. doi: 10.1109/TII.2021.3052183.
    [80] NGUYEN V L, LIN P C, CHENG Bochao, et al. Security and privacy for 6G: A survey on prospective technologies and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2384–2428. doi: 10.1109/COMST.2021.3108618.
    [81] KADHE S, RAJARAMAN N, KOYLUOGLU O O, et al. FastSecAgg: Scalable secure aggregation for privacy-preserving federated learning[J]. arXiv preprint arXiv: 2009.11248, 2020.
    [82] EL OUADRHIRI A and ABDELHADI A. Differential privacy for deep and federated learning: A survey[J]. IEEE Access, 2022, 10: 22359–22380. doi: 10.1109/ACCESS.2022.3151670.
    [83] HARDY S, HENECKA W, IVEY-LAW H, et al. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[J]. arXiv preprint arXiv: 1711.10677, 2017.
    [84] ZHAO Ping, CAO Zhikui, JIANG Jin, et al. Practical private aggregation in federated learning against inference attack[J]. IEEE Internet of Things Journal, 2023, 10(1): 318–329. doi: 10.1109/JIOT.2022.3201231.
    [85] REN Chao, YAN Rudai, XU Minrui, et al. QFDSA: A quantum-secured federated learning system for smart grid dynamic security assessment[J]. IEEE Internet of Things Journal, 2024, 11(5): 8414–8426. doi: 10.1109/JIOT.2023.3321793.
    [86] WANG Xiaoding, GARG S, LIN Hui, et al. Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning[J]. IEEE Internet of Things Journal, 2022, 9(10): 7110–7119. doi: 10.1109/JIOT.2021.3074382.
    [87] XIONG Hu, WU Yan, JIN Chuanjie, et al. Efficient and privacy-preserving authentication protocol for heterogeneous systems in IIoT[J]. IEEE Internet of Things Journal, 2020, 7(12): 11713–11724. doi: 10.1109/JIOT.2020.2999510.
    [88] WU Tianyu, HE Shizhu, LIU Jingping, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122–1136. doi: 10.1109/JAS.2023.123618.
    [89] SUN Yu, WANG Shuohuan, FENG Shikun, et al. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation[J]. arXiv preprint arXiv: 2107.02137, 2021.
    [90] ZHOU Ce, LI Qian, LI Chen, et al. A comprehensive survey on pretrained foundation models: A history from BERT to ChatGPT[J]. International Journal of Machine Learning and Cybernetics, 2024.
    [91] KASNECI E, SESSLER K, KÜCHEMANN S, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274. doi: 10.1016/j.lindif.2023.102274.
    [92] YANG Hanqing, SIEW M, and JOE-WONG C. An LLM-based digital twin for optimizing human-in-the loop systems[C]. 2024 IEEE International Workshop on Foundation Models for Cyber-Physical Systems & Internet of Things, Hong Kong, China, 2024. doi: 10.1109/FMSys62467.2024.00009.
    [93] CHEN Jiayuan, YI Changyan, DU Hongyang, et al. A revolution of personalized healthcare: Enabling human digital twin with mobile AIGC[J]. IEEE Network, 2024, 38(6): 234–242. doi: 10.1109/MNET.2024.3366560.
    [94] CHEN Xuehan, LUO Linfeng, TANG Fengxiao, et al. AIGC-based evolvable digital twin networks: A road to the intelligent metaverse[J]. IEEE Network, 2024, 38(6): 370–379. doi: 10.1109/MNET.2024.3411008.
    [95] WU Xingjiao, XIAO Luwei, SUN Yixuan, et al. A survey of human-in-the-loop for machine learning[J]. Future Generation Computer Systems, 2022, 135: 364–381. doi: 10.1016/j.future.2022.05.014.
    [96] TURNER C J, MA Ruidong, CHEN Jingyu, et al. Human in the loop: Industry 4.0 technologies and scenarios for worker mediation of automated manufacturing[J]. IEEE Access, 2021, 9: 103950–103966. doi: 10.1109/ACCESS.2021.3099311.
    [97] HIRAI R, SAITO Y, and SARUWATARI H. Federated learning for human-in-the-loop many-to-many voice conversion[C]. The 12th ISCA Speech Synthesis Workshop, Grenoble, France, 2023.
    [98] WU Wen, LI Mushu, QU Kaige, et al. Split learning over wireless networks: Parallel design and resource management[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(4): 1051–1066. doi: 10.1109/JSAC.2023.3242704.
    [99] HAFI H, BRIK B, FRANGOUDIS P A, et al. Split federated learning for 6G enabled-networks: Requirements, challenges, and future directions[J]. IEEE Access, 2024, 12: 9890–9930. doi: 10.1109/ACCESS.2024.3351600.
    [100] THAPA C, CHAMIKARA M A P, and CAMTEPE S A. Advancements of federated learning towards privacy preservation: From federated learning to split learning[M]. UR REHMAN M H and GABER M M. Federated Learning Systems: Towards Next-Generation AI. Cham: Springer, 2021: 79–109. doi: 10.1007/978-3-030-70604-3_4.
    [101] LI Weikang, LU Sirui, and DENG Dongling. Quantum federated learning through blind quantum computing[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(10): 100312. doi: 10.1007/s11433-021-1753-3.
    [102] CHEN S Y C and YOO S. Federated quantum machine learning[J]. Entropy, 2021, 23(4): 460. doi: 10.3390/e23040460.
    [103] YUN W J, KIM J P, JUNG S, et al. Slimmable quantum federated learning[J]. arXiv preprint arXiv: 2207.10221, 2022.
    [104] XIA Qi and LI Qun. QuantumFed: A federated learning framework for collaborative quantum training[C]. 2021 IEEE Global Communications Conference, Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685012.
    [105] ŞAHIN A and YANG Rui. A Survey on over-the-air computation[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 1877–1908. doi: 10.1109/COMST.2023.3264649.
    [106] ZHANG Deyou, XIAO Ming, PANG Zhibo, et al. Broadband over-the-air computation for federated learning in industrial IoT[C]. The 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 2022: 1–6. doi: 10.1109/IECON49645.2022.9968873.
    [107] YANG Kai, JIANG Tao, SHI Yuanming, et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2022–2035. doi: 10.1109/TWC.2019.2961673.
    [108] RATHI N, CHAKRABORTY I, KOSTA A, et al. Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware[J]. ACM Computing Surveys, 2023, 55(12): 243. doi: 10.1145/3571155.
    [109] NUNES J D, CARVALHO M, CARNEIRO D, et al. Spiking neural networks: A survey[J]. IEEE Access, 2022, 10: 60738–60764. doi: 10.1109/ACCESS.2022.3179968.
    [110] SKATCHKOVSKY N, JANG H, and SIMEONE O. Federated neuromorphic learning of spiking neural networks for low-power edge intelligence[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 8524–8528. doi: 10.1109/ICASSP40776.2020.9053861.
    [111] WANG Huan, LI Yanfu, and GRYLLIAS K. Brain-inspired spiking neural networks for industrial fault diagnosis: A survey, challenges, and opportunities[J]. arXiv preprint arXiv: 2401.02429, 2023.
    [112] ZHU Zhengyu, LI Zheng, CHU Zheng, et al. Intelligent reflecting surface-assisted wireless powered heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9881–9892. doi: 10.1109/TWC.2023.3274220.
    [113] ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Robust beamforming design for IRS-aided secure SWIPT terahertz systems with non-linear EH model[J]. IEEE Wireless Communications Letters, 2022, 11(4): 746–750. doi: 10.1109/LWC.2022.3142098.
    [114] 王平, 杨志伟, 李贺举. 智能反射面赋能的联邦边缘学习及其在车联网中的应用[J]. 通信学报, 2023, 44(10): 46–57. doi: 10.11959/j.issn.1000-436x.2023192.

    WANG Ping, YANG Zhiwei, and LI Heju. Federated edge learning with reconfigurable intelligent surface and its application in internet of vehicles[J]. Journal on Communications, 2023, 44(10): 46–57. doi: 10.11959/j.issn.1000-436x.2023192.
    [115] ZHENG Jie, ZHANG Haijun, KANG Jiawen, et al. Covert federated learning via intelligent reflecting surfaces[J]. IEEE Transactions on Communications, 2023, 71(8): 4591–4604. doi: 10.1109/TCOMM.2023.3281880.
    [116] ZHANG Yutong, DI Boya, ZHANG Hongliang, et al. Meta-wall: Intelligent omni-surfaces aided multi-cell MIMO communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7026–7039. doi: 10.1109/TWC.2022.3154041.
    [117] MAHMOOD A, BELTRAMELLI L, ABEDIN S F, et al. Industrial IoT in 5G-and-beyond networks: Vision, architecture, and design trends[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6): 4122–4137. doi: 10.1109/TII.2021.3115697.
    [118] ELHOUSHY S, IBRAHIM M, and HAMOUDA W. Cell-free massive MIMO: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 492–523. doi: 10.1109/COMST.2021.3123267.
    [119] ZHAO Chen, GAO Zhipeng, WANG Qian, et al. AFL: An adaptively federated multitask learning for model sharing in industrial IoT[J]. IEEE Internet of Things Journal, 2022, 9(18): 17080–17088. doi: 10.1109/JIOT.2021.3125989.
    [120] VU T T, NGO D T, TRAN N H, et al. Cell-free massive MIMO for wireless federated learning[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6377–6392. doi: 10.1109/TWC.2020.3002988.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  27
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-11-12
  • 网络出版日期:  2024-11-29

目录

    /

    返回文章
    返回