Research on Channel Modeling and Characteristics Analysis for RIS-Enabled Near-Field Marine Communications Towards 6G
-
摘要: 可重构智能超表面(RIS)作为6G移动通信中的潜在关键技术之一,具有低成本、低能耗和易于部署等特点。该文提出将RIS技术引入至海洋无线通信场景中,可使无线传输环境从不可控变为可控。然而,现有的信道模型难以充分揭示RIS使能基站-海面无人船近场通信信号独特的传输机理,信道特性分析方法与建模理论难以在计算准确性与复杂度之间实现平衡。因此,该文通过对RIS使能近场海洋通信中各子信道进行建模,提出空时频多域信号传播机理分析方法,建立RIS使能基站-无人船近场海洋通信参数化统计信道模型,解决现有RIS信道建模方法难以兼顾精度与效率的技术瓶颈问题,提高RIS使能近场海洋通信系统设计过程中的信道模型匹配效率,为我国6G移动通信产业的快速发展提供技术支撑。Abstract: Reconfigurable Intelligent Surfaces (RIS) is considered as one of the potential key technologies for 6G mobile communications, which offers advantages such as low cost, low energy consumption, and easy deployment. By integrating RIS technology into marine wireless channels, it has the capability to convert the unpredictable wireless transmission environment into a manageable one. However, current channel models are struggling to accurately depict the unique signal transmission mechanisms of RIS-enabled base station to ship channels in marine communication scenarios, resulting in challenges in achieving a balance between accuracy and complexity for channel characterization and theoretical establishment. Therefore, this paper develops a segmented channel modeling method for near-field RIS-enabled marine communications, and then proposed a multi-domain joint parameterized statistical channel model for RIS-enabled marine communications. This approach focus on addressing the technical bottleneck of existing RIS channel modeling methods that face difficulties in achieving a balance between accuracy and efficiency, ultimately facilitating the rapid development of the 6G mobile communication industry in China.
-
1. 引言
预计到2030年,第5代无线通信系统将无法满足人们的大部分通信需求,因此研发人员开始了第6代无线通信系统(the 6th Generation wireless communication system, 6G)的研发[1]。可重构智能反射面(Reconfigurable Intelligent Surface, RIS)被认为是6G的关键技术之一,能够实现可控的智能无线传播环境[2-4]。RIS由大量无源反射元件组成,成本低、复杂度低、安装灵活[5-7]。此外,RIS也被应用于物理层安全(Physical Layer Security, PLS)中,通过控制传播环境来提高安全无线通信性能[8,9]。而随着无线通信设备的日益普及,移动通信的数据流量近年来呈指数级增长[10],频谱已成为一种非常稀缺的资源。认知无线电(Cognitive Radio, CR)被认为是一种可有效提高频谱效率的方法,通过重新分配未占用的频率,有效缓解无线设备的增长带来的频谱资源稀缺问题[11]。因此,将RIS应用到CR通信系统成为当前研究热点之一。
近年来,CR和RIS技术相结合的研究也取得了诸多成果。文献[12]研究了RIS辅助下行多输入单输出(Multiple-Input Single-Output, MISO)CR通信中如何最大化次级用户(Secondary User, SU)速率,在总发射功率和干扰功率约束下,同时提高系统的频谱效率和能量效率。考虑到半双工通信未能真正充分利用无线电频谱资源,文献[13]研究了RIS辅助全双工CR系统中频谱效率的最大化问题,提高次级网络性能的同时有效降低对主用户(Primary User, PU)的干扰。然而,当SU位于PU附近时,干扰较强,SU的可实现速率很难达到。文献[14]进一步研究了对称和非对称交叉干扰链路下SU的速率最大化问题。前述文献在研究CR无线通信系统时,都将RIS作为类似中继的反射装备,文献[15]则研究了基于RIS的两种部署方案,即作为反射装备和以接入点的形式进行通信。
注意到,在上述关于RIS辅助CR系统的研究中,均未考虑无线通信系统中的安全问题,当存在窃听用户时,问题求解变得更复杂。文献[16]假设理想信道状态信息(Channel State Information, CSI)已知,研究了CR-MISO窃听信道的保密率最大化问题。文献[17]利用非理想CSI最大化SU可实现的保密率。文献[18]将系统扩展到多输入多输出(Multiple-Input Multiple-Output, MIMO)的情况,研究窃听者CSI在3种不同情况下的保密率:理想CSI、估计误差有界的非理想CSI和无CSI。
然而,在RIS辅助的频谱共享CR MIMO无线安全通信系统中,还存在诸多问题。一方面,由RIS的特性可知,RIS本身并不具备信号处理能力,且大量的反射单元导致相关的级联信道数目剧增,因此,在RIS辅助的频谱共享CR MIMO系统中,很难通过直接估计信道来获取CSI;另一方面,快速时变信道是无线通信系统中一种常见的情况,瞬时CSI难以获取且很容易过时。虽然上述部分文献考虑到了安全无线通信问题,但均利用瞬时CSI(理想或非理想)来设计系统参数。相对于瞬时CSI来说,统计CSI更容易获取,且系统开销较小,不需要对每个瞬时值计算系统参数,复杂度较低。因此,利用统计CSI研究无线安全传输方法具有重要实际意义。为此,本文开展了基于统计CSI的RIS辅助CR MIMO无线安全传输方法研究。主要贡献如下:
(1)在空间相关莱斯信道中,利用大系统近似理论得到系统遍历安全速率的确定性等价式,并推导了确定等价式最大化的最优发送协方差矩阵。
(2)在发送协方差矩阵固定时,提出一种次优的相移矩阵设计方法,并提出一种发送协方差矩阵和相移矩阵交替优化算法。
2. 系统模型和问题
2.1 系统模型
图1考虑了一个RIS辅助的频谱共享CR MIMO系统信道模型。次级发送机(Secondary Transmitter, ST), PU, SU和窃听者(Eavesdropper, Eve)分别配备了
M ,D ,N ,E 根天线,RIS由L 个被动反射元件组成。当ST传输保密消息时,ST与PU, SU, Eve之间的直接链路被阻挡,只能接收RIS反射的信号。Eve会窃取ST发送给SU的信息,造成SU的信息泄露。假设
Ha∈CL×M ,Hb∈CN×L ,He∈CE×L ,HP∈CD×L 分别表示ST-RIS, RIS-SU, RIS-Eve, RIS-PU之间的信道矩阵。SU和Eve的接收信号可以分别表示为yu=(HbΦHa)s+zu ye=(HeΦHa)s+ze 其中,
s 是均值为0 、协方差矩阵为Q=E{ssH} 的高斯向量信号,Φ=diag([θ1,θ2,⋯,θL]T) 表示相移矩阵,对角线元素θl=ejϑi ,且ϑl∈[0,2π) ,zu 和ze 分别为SU和Eve处的加性高斯白噪声,其均值为0 ,方差为σu2IN ,σe2IE ,本文假设σu=σe=σ 。本文考虑莱斯信道模型,采用Kronecker模型来表征MIMO信道的空间相关性
(w=a,P,b,e) Hw=˜Hw+ˉHw=R12wXwT12w+ˉHw (2) 其中,
Rw 和Tw 为确定性非负矩阵,分别表征各下行链路信道的空间相关性,ˉHw 是确定性视距分量(Line of Sight, LoS),Xa = [1/√MXa,ij] ,XP = [1/√LXP,ij] ,Xb = [1/√LXb,ij] ,Xe = [1/√LXe,ij] 为信道的随机成分,Xw,ij 独立同分布,具有0均值和单位方差。此外,用
αw 表示4条链路的信道增益系数,κw 表示相应的莱斯因子,做归一化为tr(Ra)=L,tr(Ta)=Mαaκa+1,tr(ˉHaˉHHa)=κaαaLκa+1 tr(RP)=D,tr(TP)=L2αPκP+1,tr(ˉHPˉHHP)=κPαPDLκP+1 tr(Rb)=N,tr(Tb)=L2αbκb+1,tr(ˉHbˉHHb)=κbαbNLκb+1 tr(Re)=E,tr(Te)=L2αeκe+1,tr(ˉHeˉHHe)=κeαeELκe+1 只有保证ST对PU的干扰在一定阈值内,ST和SU才可以在同一频段进行通信。因此,总功率约束(Total Power Constraint, TPC)和干扰功率约束(Interference Power Constraint, IPC)应满足
tr(Q)≤MPT E{tr(HPΦHaQ(HPΦHa)H)}≤MPI 其中,
PT>0 表示ST处总发射功率最大值,PI 是对PU的最大干扰功率阈值,E{⋅} 表示求期望。本文假设PU,SU和Eve的统计CSI已知,即能获得
{Rw,Tw,ˉHw,κw,αw(w=a,P,b,e)} 。可以得到SU和Eve的速率分别为Ru(Q,Φ)=E{log2det(IN+1σ2HbΦHaQ(HbΦHa)H)} Re(Q,Φ)=E{log2det(IE+1σ2HeΦHaQ(HeΦHa)H)} 因此,系统的遍历安全速率可以表示为
Cs=(Ru−Re)+ (6) 其中,
(a)+=max{0,a} 。2.2 问题描述
为了评估RIS辅助MIMO CR通信系统的保密性能,本文在满足TPC和IPC的条件下,通过最大化可达安全速率,联合设计ST处的发送协方差矩阵和RIS处的相移矩阵。优化问题表述为
maxQ,Φ Cs,s.t. tr(Q)≤MPT,Q≻−0,E{tr(HPΦHaQ(HPΦHa)H)}≤MPI,Φ=diag([θ1,θ2,⋯,θL]T),θl=ejϑl,ϑl∈[0,2π) (7) 上述优化问题是非凸的,且变量
Q 和Φ 在目标函数和IPC中均是耦合的,很难同时进行优化。因此在第3节提出了一种交替优化(Alternating Optimization, AO)算法联合优化Q 和Φ 。3. 发送协方差矩阵和RIS相移矩阵设计
本节利用统计CSI来解决问题式(7),首先固定
Q 求最优的Φ ,然后固定Φ 获得最优的Q 。3.1 遍历安全速率的确定性等价表达式
为求解问题式(7),首先根据文献[19],获得式(6)的确定性等价表达式,当
M ,L ,N ,E 均趋于无穷时,比率N/L ,L/M ,E/M 和E/L 保持不变。式(6)中遍历安全速率的确定性等价表达式ˉCs=log2det(IM+FbQ)+log2det(IN+b2σ2Rb)+log2det(IL+b1ΦH(ˉHHbΞ−1bˉHb+˜b2Tb)ΦRa)−log2det(IM+FeQ)−log2det(IE+e2σ2Re)−log2det(IL+e1ΦH(ˉHHeΞ−1eˉHe+˜e2Te)ΦRa)−Mb1˜b1−Lb2˜b2+Me1˜e1+Le2˜e2 (8) 其中,
{b1,˜b1,b2,˜b2} 和{e1,˜e1,e2,˜e2} 为b1=1Mtr((IM+ˉHHaΘ−1bΨbˉHaQ+˜b1TaQ)−1TaQ) b2=1Ltr((b1RaΘ−1b+ΠbΠHb)ΦHTbΦ) ˜b1=1Mtr((Θ−1bΨb−ΨbΠbΠHbΨHb)Ra) ˜b2=1Ltr((Ξ−1b−Ξ−1bˉHbb1RaΘ−1bˉHHbΞ−1b)Rb)−1Ltr((Ξ−1bˉHbΠbΠHbˉHHbΞ−1b)Rb) e1=1Mtr((IM+ˉHHaΘ−1eΨeˉHaQ+˜e1TaQ)−1TaQ) e2=1Ltr((e1RaΘ−1e+ΠeΠHe)ΦHTeΦ) ˜e1=1Mtr((Θ−1eΨe−ΨeΠeΠHeΨHe)Ra) ˜e2=1Ltr((Ξ−1e−Ξ−1eˉHee1RaΘ−1eˉHHeΞ−1e)Re)−1Ltr((Ξ−1eˉHeΠeΠHeˉHHeΞ−1e)Re) 此外,
{Fi,Θi,Ξi,Ψi,Πi,Γi} 可以表示为Fi=ˉHHaΓ−1iΦH(ˉHHiΞ−1iˉHi+˜i2Ti)ΦˉHa+˜i1Ta Θi=IL+i1ΨiRa Ξb=σ2IN+b2Rb Ξe=σ2IE+e2Re Ψi=ˉHHiΞ−1iˉHi+˜i2Ti Πi=Θ−1iˉHa(IM+ˉHHaΘ−1iΨiˉHa+˜i1Ta)−12 Γi=IL+i1ΦH(ˉHHiΞ−1iˉHi+˜i2Ti)ΦRa 其中,
i∈{b,e} 。因此,问题式(7)可以转换为maxQ,Φ ˉCs,s.t. tr(Q)≤MPT,Q≻−0,E{tr(HPΦHaQ(HPΦHa)H)}≤MPI,Φ=diag([θ1,θ2,⋯,θL]T),θl=ejϑl,ϑl∈[0,2π) (12) 上述优化问题是非凸的,仍然难以求解。接下来,提出一种AO算法,分别迭代设计
Q 和Φ 。3.2 发送协方差矩阵设计
给定
Φ ,相应的优化Q 的子问题可以表示为maxQ ˉCs,s.t. tr(Q)≤MPT, Q≻−0,E{tr(HPΦHaQ(HPΦHa)H)}≤MPI (13) 其中,IPC不等式的左边具体表达式为
E{tr(HPΦHaQ(HPΦHa)H)}=tr(ˉHPΦˉHaQˉHHaΦHˉHHP)+Dtr(ΦˉHaQˉHHaΦHTP)+tr(QTa)tr(ˉHPΦRaΦHˉHHP)+Dtr(QTa)tr(ΦRaΦHTP) (14) 上述优化问题是非凸的,将在下面的定理中给出问题式(13)的解。
定理1 对
K−12FbK−12 进行奇异值分解K−12FbK−12=VKΛKVHK ,得到问题式(13)的最优解Qopt=K−12VKΛoptVHKK−12 (15) 其中
K=1νFe12(IM+Fe12˜QFe12)−1Fe12−λν(ˉHHaΦHˉHHPˉHPΦˉHa+Tatr(ˉHPΦRaΦHˉHHP)+DˉHHaΦHTPΦˉHa+DTatr(ΦRaΦHTP))+IM (16) 特征值矩阵通过式(17)求得
Λopt=(1νIM−Λ−1K)+ (17) 其中,
λ≥0 和ν≥0 是满足约束的拉格朗日参数。证明 由文献[20]的泰勒级数近似表达式,目标函数中的
(IM+FbQ)−1Fb 在˜Q 处进行泰勒展开(IM+FbQ)−1Fb≈log2det(IM+Fe˜Q)+tr(IM+Fe˜Q)−1Fe(Q−˜Q) (18) 然后可以获得
ˉCs 的泰勒近似展开表达式ˉCs≈˜Cs=˜Is+log2det(IN+b2σ2Rb)−log2det(IE+e2σ2Re)+log2det(IL+b1ΦH(ˉHHbΘ−1bˉHb+˜b2Tb)ΦRa)−log2det(IL+e1ΦH(ˉHHeΘ−1eˉHe+˜e2Te)ΦRa)−Mb1˜b1−Lb2˜b2+Me1˜e1+Le2˜e2 (19) 其中
˜Is=log2det(IM+FbQ)−log2det(IM+Fe˜Q)−tr((IM+Fe˜Q)−1Fe(Q−˜Q)) (20) 优化问题式(13)可以转换为
maxQ ˜Cs,s.t. tr(Q)≤MPT, Q⪰0,E{tr(HPΦHaQ(HPΦHa)H)}≤MPI (21) 上述优化问题的拉格朗日对偶函数可以写为
L(Q,Φ,λ,ν)=˜Cs(Q,Φ)−λ(tr(ˉHPΦˉHaQˉHHaΦHˉHHP)+tr(QTa)tr(ˉHPΦRaΦHˉHHP)+Dtr(ΦˉHaQˉHHaΦHTP)+Dtr(QTa)tr(ΦRaΦHTP)−MPI) −ν(tr(Q)−MPT)−tr(AQ) (22) 其中,
λ≥0,ν≥0,A⪰0 都是拉格朗日参数。对式(22)关于求偏导,得到优化问题式(21)的库恩塔克(Karush–Kuhn–Tucker, KKT)条件式(23),代入式(16),则式(23)的第1个等式可以转换为−(IM+FbQ)−1Fb+(IM+Fe˜Q)−1Fe−λ(ˉHHaΦHˉHHPˉHPΦˉHa+Tatr(ˉHPΦRaΦHˉHHP)+DˉHHaΦHTPΦˉHa+DTatr(ΦRaΦHTP))+νIM−A=0λ(MPI−tr(ˉHPΦˉHaQˉHHaΦHˉHHP)−tr(QTa)tr(ˉHPΦRaΦHˉHHP)−Dtr(ΦˉHaQˉHHaΦHTP)−Dtr(QTa)tr(ΦRaΦHTP))=0,λ≥0ν(MPT−tr(Q))=0,ν≥0,tr(AQ)=0,A⪰0,Q⪰0} (23) −(IM+K−12FbK−12Q′)−1K−12FbK−12+νIM−A′=0 (24) 其中,
Q′=K12QK12 ,A′=K−12FbK−12 。则问题式(21)可以转换为maxQ′ log2det(IM+K−12FbK−12Q′),s.t. tr(K−12Q′K−12)≤MPT,Q′⪰0 (25) 上述优化问题可以通过注水算法求解[19,21]。对
A′ 进行特征值分解K−12FbK−12=VKΛKVHK ,得到最优发送协方差矩阵Q=K−12VKΛVHKK−12 ,其中Λ=(1/νIM−Λ−1K)+ 。证毕 3.3 相移矩阵设计
给定
Q ,相应的优化Φ 的子问题可以表示为如式(26)maxQ,Φ ˉCs,s.t. E{tr(HPΦHaQ(HPΦHa)H)}≤MPI,Φ=diag([θ1,θ2,⋯,θL]T),θl=ejϑl,ϑl∈[0,2π) (26) 优化问题式(26)的拉格朗日对偶函数可以写为
L(Φ,μ)=ˉCs(Φ)−μ(tr(ˉHPΦˉHaQˉHHaΦHˉHHP)+tr(QTa)tr(ˉHPΦRaΦHˉHHP)+Dtr(ΦˉHaQˉHHaΦHTP)+Dtr(QTa)tr(ΦRaΦHTP)−MPI) (27) ∂L(Φ,μ)∂θl=b1tr(Γ−1bΥbRa)+tr(Q(IM+FbQ)−1(−b1ˉHHaΓ−1bΥbRaΓ−1bΦH(ˉHHbΞ−1bˉHb+˜b2Tb)ΦˉHa))+tr(Q(IM+FbQ)−1ˉHHaΓ−1bΥbˉHa)−tr(Q(IM+FeQ)−1ˉHHaΓ−1eΥeˉHa)−e1tr(Γ−1eΥeRa)−tr(Q(IM+FeQ)−1(−e1ˉHHaΓ−1eΥeRaΓ−1eΦH(ˉHHeΞ−1eˉHe+˜e2Te)ΦˉHa))−μ(tr(ˉHaQˉHHaΦHˉHHPˉHPEll−θ−2lEllˉHHPˉHPΦˉHaQˉHHa)+tr(QTa)tr(RaΦHˉHHPˉHPEll−θ−2lEllˉHHPˉHPΦRa)+Dtr(ˉHaQˉHHaΦHTPEll−θ−2lEllTPΦˉHaQˉHHa)+Dtr(QTa)tr(RaΦHTPEll−θ−2lEllTPΦRa))=0 (28) 其中,
μ≥0 是干扰功率约束相应的拉格朗日参数。通过求解KKT条件式(28),得到新的相移矢量θ(n+1) 。对于i∈{b,e} ,Υi 可由下述表达式获得Υi=ΦH(ˉHHiΞ−1iˉHi+˜i2Ti)Ell−θ−2iEll(ˉHHiΞ−1iˉHi+˜i2Ti)Φ (29) Ell 是第l 行、第l 列的元素为1,其余全为0的L×L 维矩阵。μ 可以通过投影梯度法进行迭代μ(n+1)=[μ(n)−Δ(tr(ˉHPΦˉHaQˉHHaΦHˉHHP)+tr(QTa)tr(ˉHPΦRaΦHˉHHP)+Dtr(ΦˉHaQˉHHaΦHTP)+ Dtr(QTa)tr(ΦRaΦHTP)−MPI)]+ (30) 其中,
Δ 是迭代步长。可以得到相应的相移矩阵为Φ(t+1)=diag(θ(t+1)) (31) 3.4 完整的AO算法
完整的AO算法如算法1所示。
算法1 AO算法 初始化:
Q(0)=IM, Φ(0)=Φ0, b(0)i = ˜b(0)i=e(0)i=˜e(0)i=1(i=1,2),
ˉCs(1)=0, ε=10−4(1) 循环 (2) 过程1:给定Φ,注水算法求解最优解Qopt (3) 根据式(11a)和式(16),计算Fu(t+1),Fe(t+1)和K(t+1); (4) 根据式(15)计算Q(t+1),并且根据干扰功率约束
E{tr(HPΦHaQ(HPΦHa)H)}≤MPI和发送功率约束
tr(Q)≤MPT确定合适的λ(t+1),ν(t+1);(5) 根据式(9)、式(10)计算b(t+1)i,˜b(t+1)i,e(t+1)i,˜e(t+1)i
(i=1,2),更新˜Q(t+1)=Q(t+1);(6) 根据式(8)计算ˉCs(Q(t+1),Φ); (7) 更新t:=t+1,直到|ˉCs(Q(t+1),Φ)−ˉCs(Q(t),Φ)|≤ε; (8) 获得Qopt=Q(t+1); (9) 过程2:给定Q,投影梯度上升法求解最优解Φopt (10) 根据式(30)更新μ(t+1); (11) 基于给定Φ(t),根据式(9)、式(10)计算
b(t+1)i,˜b(t+1)i,e(t+1)i,˜e(t+1)i (i=1,2);(12) 根据式(28)计算θ(n+1),Φ(t+1)=diag(θ(t+1)); (13) 根据式(8)计算ˉCs(Q,Φ(t+1)); (14) 更新t:=t+1,直到|ˉCs(Q,Φ(t+1))−ˉCs(Q,Φ(t))|≤ε (15) 获得Φopt=Φ(t+1); (16) 直到 |ˉCs(Qopt,Φopt)−ˉCs(Q(t),Φ(t))|≤ε,结束循环。 4. 仿真结果
本节将通过仿真结果来验证第3节提出算法的有效性。信道增益设置为
αa=αP=αb=1 ,αe=0.6 ,莱斯因子κw=1 (w=a,P,b,e) 。信道LoS分量根据文献[22]设置为全1矩阵,即[ˉH]∀m,n=1 ,空间相关矩阵Rw 和Tw 根据参考文献[23]生成,具体表示形式为[Rw或Tw]m,n=180∘∫−180∘dϕ√2πδ2e2πjds(m−n)sin(πϕ180)−(ϕ−η)22δ2 (32) 其中,
ds ,δ ,φ 和η 分别表示相对天线间距、均方根角度扩展、阵列平面中的物理角度和平均角度,m,n 表示天线序列号。其中,ds=1 ,αa,αP,αb=1 ,αe=0.6 ,ηRa,ηRP,ηRb=−5∘ ,ηTa,ηTP,ηTb=0∘ ,ηRe=5∘ ,ηTe=10∘ ,δRa,δTa,δRP,δTP,δRb,δTb=30∘ ,δRe,δTe=10∘ 。图2显示了不同系统配置下,模拟速率和遍历安全速率的确定性等价表达式的结果。设置ST天线数和RIS反射单元数为
M=L=16 ,PU和窃听者处的天线数为D=E=12 ,总发射功率为PT=25 dBm,PU最大干扰功率阈值为PI=15 dBm。考虑SU比窃听者具有更多的天线和SU比窃听者具有更少的天线。可以发现,遍历安全速率与SNR呈正相关,分析结果(实心曲线)与10 000次蒙特卡罗平均法获得的模拟结果(标记)完全一致,且联合优化Q 和Φ ,系统的保密性能会得到显著提升。另外,本文还比较了统计CSI方案和无CSI方案,其中,统计CSI方案表示统计CSI可以在PU, SU和窃听者处获得;在没有CSI方案情况下,本文初始设置Q(0)=I ,且Φ(0) 的对角元素在[0,2π) 中服从均匀独立分布随机生成。很显然,没有CSI方案更易于实现,但是没有CSI方案的性能远不如所提出的方案。图3展示了系统遍历安全速率的确定性等价表达式结果与迭代次数的关系。设置ST天线数、SU天线数、窃听者天线数和RIS反射单元数为
M=N=E=L=16 。总发射功率设置为PT=25 dBm, PU最大干扰功率阈值为PI=15 dBm。可以看出,随着迭代次数的增加,系统的遍历安全速率单调增加直至保持稳定状态,即该算法在18次迭代后达到收敛,证实了该算法的收敛性。图4比较了遍历安全速率与窃听者天线数的关系。设置ST天线数、RIS反射单元数为
M=L=16 ,PU和SU的天线数为N=D=12 ,总发射功率设置为PT=25 dBm,PU最大干扰功率阈值为PI=15 dBm。在无线安全通信的场景中,窃听者的存在会降低通信质量,而随着窃听者天线数的不断增加,遍历安全速率也会不断降低。当窃听者的天线数由2增加至12时,在未优化Q 和Φ 的情况下,遍历安全速率将随着窃听者天线数的增加不断降低甚至趋于零,此时SU的通信质量极差。然而,本文提出的算法可以改善这种情况,在较差的通信环境下,也能保证SU进行有效的安全通信,这也表明了本算法的优越性。图5展示了在不同发射功率,设置ST天线数
M=16 ,PU, SU和窃听者的天线数为N=D=E=8 ,PU最大干扰功率阈值为PI=15 dBm的情况下,遍历安全速率与RIS反射单元数L 的关系。从图中可以观察到,随着RIS反射单元数的增加,遍历安全速率也增加,这是由于阵列增益对系统性能的影响。但是,随着L 的增加,遍历安全速率的增速逐渐减缓。这表明,在实际的RIS部署中,当RIS的反射单元数量增加到一定程度时,再继续增加相同的反射单元数量时,系统的性能增益会减小,这为最优反射单元数的设置提供了参考。同时,对比L=10 和L=60 时不同发送功率下的遍历安全速率,可以发现,增加发送功率也能增加遍历安全速率,且在RIS反射单元数较大时,功率增加所带来的速率增益更大。图6显示了在不同均方根角度扩展下,系统遍历安全速率与SNR的关系。设置ST天线数、RIS反射单元数
M=L=16 ,PU, SU和窃听者的天线数为N=D=E=12 ,PU最大干扰功率阈值为PI=15dBm 。由于空间相关性会随着均方根角度扩展的减小而增大,因此从中可以看出,系统遍历安全速率随着空间相关性的增加而降低,这是因为天线间的空间相关性降低了信道容量和分集增益。5. 结论
本文研究了基于统计CSI的RIS辅助频谱共享CR MIMO无线安全传输方法。首先,利用统计CSI,推导出系统遍历安全速率的确定性等价表达式;然后,在满足总功率约束和干扰功率约束条件下,通过最大化系统遍历安全速率,采用泰勒级数展开法和拉格朗日乘子法设计了发送协方差矩阵和相移矩阵。仿真结果验证了所推导的确定性等价表达式的准确性,也验证了所提算法的有效性。
-
[1] JIANG Wei, HAN Bin, HABIBI M A, et al. The road towards 6G: A comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2021, 2: 334–366. doi: 10.1109/OJCOMS.2021.3057679. [2] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6. [3] 何雨蓓. 6G海洋通信信道特性分析与建模[D]. [博士论文], 山东大学, 2023. doi: 10.27272/d.cnki.gshdu.2023.007461.HE Yubei. Channel characteristic analysis and channel modeling for 6G maritime communications[D]. [Ph. D. dissertation], Shandong University, 2023. doi: 10.27272/d.cnki.gshdu.2023.007461. [4] JIANG Hao, MUKHERJEE M, ZHOU Jie, et al. Channel modeling and characteristics for 6G wireless communications[J]. IEEE Network, 2021, 35(1): 296–303. doi: 10.1109/MNET.011.2000348. [5] 孙华丽, 孟维晓, 张乃通. 空时频MIMO信道建模与实现[J]. 电子与信息学报, 2008, 30(9): 2279–2282. doi: 10.3724/SP.J.1146.2007.00209.SUN Huali, MENG Weixiao, and ZHANG Naitong. Modeling and implementation of space-time-frequency MIMO channel[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2279–2282. doi: 10.3724/SP.J.1146.2007.00209. [6] 陈天贝, 李娜, 陶小峰. 低开销智能反射面辅助无线通信研究综述[J]. 中兴通讯技术, 2023, 29(6): 29–38. doi: 10.12142/ZTETJ.202306006.CHEN Tianbei, LI Na, and TAO Xiaofeng. Survey on low-overhead reconfigurable intelligent surface assisted wireless communication[J]. ZTE Technology Journal, 2023, 29(6): 29–38. doi: 10.12142/ZTETJ.202306006. [7] 李贵勇, 杜一舟, 王丹. 可重构智能表面辅助的多用户通信宽带信道估计[J]. 电子与信息学报, 2023, 45(7): 2443–2450. doi: 10.11999/JEIT220775.LI Guiyong, DU Yizhou, and WANG Dan. Wideband channel estimation for multiuser communication based on reconfigurable intelligent surface assisted[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2443–2450. doi: 10.11999/JEIT220775. [8] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352. [9] BASAR E and YILDIRIM I. Reconfigurable intelligent surfaces for future wireless networks: A channel modeling perspective[J]. IEEE Wireless Communications, 2021, 28(3): 108–114. doi: 10.1109/MWC.001.2000338. [10] 黄子轩, 姚刘嘉, 游昌盛. 超大规模智能反射面辅助的近场移动通信研究[J]. 无线电通信技术, 2024, 50(2): 263–268. doi: 10.3969/j.issn.1003-3114.2024.02.006.HUANG Zixuan, YAO Liujia, and YOU Changsheng. Research on extremely large-scale IRS assisted near-field mobile communications[J]. Radio Communications Technology, 2024, 50(2): 263–268. doi: 10.3969/j.issn.1003-3114.2024.02.006. [11] ZHANG Haiyang, SHLEZINGER N, GUIDI F, et al. 6G wireless communications: From far-field beam steering to near-field beam focusing[J]. IEEE Communications Magazine, 2023, 61(4): 72–77. doi: 10.1109/MCOM.001.2200259. [12] CUI Mingyao, WU Zidong, LU Yu, et al. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions[J]. IEEE Communications Magazine, 2023, 61(1): 40–46. doi: 10.1109/MCOM.004.2200136. [13] YUAN Jiwei, QIAN Hongbao, and WANG Donghai. Study on application of channel propagation model for maritime communication[C]. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, Dalian, China, 2022: 855–859. doi: 10.1109/IPEC54454.2022.9777553. [14] MA Zhangfeng, AI Bo, HE Ruisi, et al. Modeling and analysis of MIMO multipath channels with aerial intelligent reflecting surface[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 3027–3040. doi: 10.1109/JSAC.2022.3196112. [15] SUN Guiqi, HE Ruisi, MA Zhangfeng, et al. A 3D geometry-Based non-stationary MIMO channel model for RIS-assisted communications[C]. 2021 IEEE 94th Vehicular Technology Conference, Norman, OK, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625374. [16] SUN Yingzhuo, WANG Chengxiang, HUANG Jie, et al. A 3D non-stationary channel model for 6G wireless systems employing intelligent reflecting surfaces with practical phase shifts[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 496–510. doi: 10.1109/TCCN.2021.3075438. 期刊类型引用(1)
1. 罗春兰,林文,祝晓霞. (47, 24, 11)QR码的快速代数译码算法. 三明学院学报. 2022(06): 60-66+78 . 百度学术
其他类型引用(1)
-