高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态车辆网络场景中的协同空地计算卸载和资源优化

王俊华 罗菲 高广鑫 李斌

王俊华, 罗菲, 高广鑫, 李斌. 动态车辆网络场景中的协同空地计算卸载和资源优化[J]. 电子与信息学报. doi: 10.11999/JEIT240464
引用本文: 王俊华, 罗菲, 高广鑫, 李斌. 动态车辆网络场景中的协同空地计算卸载和资源优化[J]. 电子与信息学报. doi: 10.11999/JEIT240464
WANG Junhua, LUO Fei, GAO Guangxin, BIN Li. Collaborative Air-Ground Computation Offloading and Resource Optimization in Dynamic Vehicular Network Scenarios[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240464
Citation: WANG Junhua, LUO Fei, GAO Guangxin, BIN Li. Collaborative Air-Ground Computation Offloading and Resource Optimization in Dynamic Vehicular Network Scenarios[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240464

动态车辆网络场景中的协同空地计算卸载和资源优化

doi: 10.11999/JEIT240464
基金项目: 国家自然科学基金(62002166),国家社会科学基金(22BGL113)
详细信息
    作者简介:

    王俊华:女,副教授,研究方向为移动边缘计算、人工智能等

    罗菲:女,硕士生,研究方向为车联网、边缘缓存和计算卸载等

    高广鑫:男,副教授,研究方向为算力网络管理、智慧交通等

    李斌:男,副教授,研究方向为边缘计算与资源优化,深度强化学习算法等

    通讯作者:

    高广鑫 gxgao@nuaa.edu.cn

  • 中图分类号: TN929.5; TP18

Collaborative Air-Ground Computation Offloading and Resource Optimization in Dynamic Vehicular Network Scenarios

Funds: The National Natural Science Foundation of China (62002166), The National Social Science Fund of China (22BGL113)
  • 摘要: 针对移动用户数量迅猛增长和地面基础设施分布稀疏所带来的挑战,该文提出一种能量收集辅助的空地协同计算卸载架构。该架构充分利用无人机(UAVs)的灵活机动性和路侧单元(RSUs)及基站(BS)的强大算力,实现了任务计算的动态实时分发。特别地,无人机通过能量收集来维持其持续运行和稳定的计算性能。考虑到无人机与地面车辆的高动态性、车辆计算任务的随机性,以及信道模型的时变性,提出一个能耗受限的长期优化问题,旨在从全局角度有效降低整个系统的平均时延。为了解决这一复杂的混合整数规划(MIP)问题,提出一种基于改进演员-评论家(Actor-Critic)强化学习算法的计算卸载策略(IACA)。该算法运用李雅普诺夫优化技术,将长期系统时延优化问题分解为一系列易于处理的帧级子问题。然后,利用遗传算法计算目标Q值替代目标神经网络输出以调整强化学习进化方向,有效避免了算法陷入局部最优,从而实现动态车辆网络中的高效卸载和资源优化。通过综合仿真验证了所提计算卸载架构和算法的可行性和优越性。
  • 图  1  能量收集辅助动态车辆网络中的空地协同计算卸载

    图  2  IACA算法架构图

    图  3  不同时隙数下的训练损失和奖励

    图  4  不同时隙数对系统性能的影响

    图  5  不同任务大小对系统性能的影响

    图  6  不同李雅普诺夫控制参数V对系统性能的影响

    图  7  不同UAV能耗阈值和数量对系统平均时延的影响

    1  基于改进Actor-Critic强化学习算法的计算卸载策略

     输入:系统状态 $ {\boldsymbol{S}}_{t} $,参数 $ V $,奖励折扣因子 $ \gamma $,Actor 网络结构,Critic 网络结构
     输出:卸载决策$ {\hat{\boldsymbol{\alpha }}}^{t} $,每个时间帧对应的最优计算频率分配$ {\widehat{\boldsymbol{f}}}^{t} $
     (1) 初始化经验池, 网络模型参数以及系统环境参数;
     (2) for episode $ \leftarrow \mathrm{1,2},\cdots $ do
     (3)  获取当前环境系统初始状态 $ {\boldsymbol{S}}_{0} $
     (4)  Actor 生成一个0~1的松驰动作 $ {\hat{\alpha }}_{u,s}^{t},{\hat{f}}_{u}^{t} $;
     (5)  将$ {\hat{\alpha }}_{u,s}^{t} $和$ {\hat{f}}_{u}^{t} $量化为二进制动作$ {\hat{\boldsymbol{\alpha }}}^{t} $和满足约束条件的计算频率$ {\widehat{\boldsymbol{f}}}^{t} $,得到动作$ {\boldsymbol{A}}_{t} $;
     (6)  基于动作 $ {\boldsymbol{A}}_{t} $ 得到下一个的状态 $ {\boldsymbol{S}}_{t+1} $ 和当前奖励 $ {R}_{t} $;
     (7)  改进遗传算法生成卸载决策$ {\stackrel{-}{\alpha }}_{u,s}^{t}, $和奖励 $ {\stackrel{-}{R}}_{t} $;
     (8)  if $ {\bar{R}}_{t} > {R}_{t} $ then
     (9)   $ {\boldsymbol{A}}_{t}=\left\{{\bar{\alpha }}_{u,s}^{t},{f}_{u}^{t}\right\} $
     (10) $ {R}_{t}={\stackrel{-}{R}}_{t} $
     (11) 将 $ \left\{{\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t},{R}_{t},{\boldsymbol{S}}_{t+1}\right\} $ 存储至缓冲池中;
     (12) for Agent do
     (13) 从经验池中随机采样批量数据 $ \left\{{\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t},{R}_{t},{\boldsymbol{S}}_{t+1}\right\} $;
     (14) 通过 $ {\lambda }_{t}={R}_{t}+\gamma Q\left({\boldsymbol{S}}_{t+1},{\boldsymbol{A}}_{t+1}:{\omega }^{\mathrm{\text{'}}}\right) $ 计算 TD 目标值;
     (15) 计算损失值 $ \mathrm{L}\mathrm{o}\mathrm{s}\mathrm{s}\left(\omega \right)=\dfrac{1}{2}{\left[Q\left({\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t}:\omega \right)-{\lambda }_{t}\right]}^{2} $,更新 Critic 网络;
     (16) 计算损失值 $ \mathrm{L}\mathrm{o}\mathrm{s}\mathrm{s}\left(\theta \right)={\nabla }_{\mathrm{\theta }}\mathrm{l}\mathrm{n}{\pi }_{\theta }\left({\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t}\right)Q\left({\boldsymbol{S}}_{t},{\boldsymbol{A}}_{t}:\omega \right) $ ,采用策略梯度更新 Actor 网络;
     (17) for $ t=\mathrm{1,2},\cdots ,T $ do
     (18) 获取时隙t 的环境状态;
     (19) 利用训练好的 Actor-Critic 模型,得到时隙t的最优卸载决策$ {\hat{\boldsymbol{\alpha }}}^{t} $和计算频率$ {\hat{\boldsymbol{f}}}^{t} $;
    下载: 导出CSV

    表  1  实验参数表

    参数 参数
    UAV计算能效系数 $ {\kappa }_{u} $ 10–28 UAV飞行速度 $ {v}_{u}^{t} $ 25 m/s
    可用带宽$ {B}_{u,v} $ 3 MHz 可用带宽 $ {B}_{u,r} $ 1 MHz
    可用带宽 $ {B}_{u,0} $ 2.5 MHz 奖励折扣因子 $ \gamma $ 0.95
    模型训练优化器 AdamOptimizer 批处理数量 512
    Actor 学习率 0.001 Critic 学习率 0.002
    天线增益$ {A}_{d} $ 3 载波频率$ {F}_{u,r} $ 915 MHz
    路径损耗$ {g}_{0} $ –40 dB 参考距离 $ {d}_{0} $ 1 m
    下载: 导出CSV
  • [1] ZHANG Haibo, LIU Xiangyu, XU Yongjun, et al. Partial offloading and resource allocation for MEC-assisted vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1276–1288. doi: 10.1109/TVT.2023.3306939.
    [2] LIU Qian, LIANG Hairong, LUO Rui, et al. Energy-efficiency computation offloading strategy in UAV aided V2X network with integrated sensing and communication[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1337–1346. doi: 10.1109/OJCOMS.2022.3195703.
    [3] YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898.
    [4] HU Jinna, CHEN Chen, CAI Lin, et al. UAV-assisted vehicular edge computing for the 6G internet of vehicles: Architecture, intelligence, and challenges[J]. IEEE Communications Standards Magazine, 2021, 5(2): 12–18. doi: 10.1109/MCOMSTD.001.2000017.
    [5] WANG Junhua, WANG Ling, ZHU Kun, et al. Lyapunov-based joint flight trajectory and computation offloading optimization for UAV-assisted vehicular networks[J]. IEEE Internet of Things Journal, 2024, 11(2): 22243–22256. doi: 10.1109/JIOT.2024.3382242.
    [6] HE Yixin, ZHAI Daosen, ZHANG Ruonan, et al. A mobile edge computing framework for task offloading and resource allocation in UAV-assisted VANETs[C]. IEEE Conference on Computer Communications Workshop, Vancouver, Canada, 2021: 1–6. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484643.
    [7] DUAN Xuting, ZHOU Yukang, TIAN Daxin, et al. Weighted energy-efficiency maximization for a UAV-assisted multiplatoon mobile-edge computing system[J]. IEEE Internet of Things Journal, 2022, 9(19): 18208–18220. doi: 10.1109/JIOT.2022.3155608.
    [8] ZHAO Nan, YE Zhiyang, PEI Yiyang, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6949–6960. doi: 10.1109/TWC.2022.3153316.
    [9] ZHANG Liang, JABBARI B, and ANSARI N. Deep reinforcement learning driven UAV-assisted edge computing[J]. IEEE Internet of Things Journal, 2022, 9(24): 25449–25459. doi: 10.1109/JIOT.2022.3196842.
    [10] YAN Ming, XIONG Rui, WANG Yan, et al. Edge computing task offloading optimization for a UAV-assisted internet of vehicles via deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5647–5658. doi: 10.1109/TVT.2023.3331363.
    [11] WU Zhiwei, YANG Zilin, YANG Chao, et al. Joint deployment and trajectory optimization in UAV-assisted vehicular edge computing networks[J]. Journal of Communications and Networks, 2022, 24(1): 47–58. doi: 10.23919/JCN.2021.000026.
    [12] YANG Chao, LIU Baichuan, LI Haoyu, et al. Learning based channel allocation and task offloading in temporary UAV-assisted vehicular edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9884–9895. doi: 10.1109/TVT.2022.3177664.
    [13] PENG Haixia and SHEN Xuemin. Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 131–141. doi: 10.1109/JSAC.2020.3036962.
    [14] LIU Yinan, YANG Chao, CHEN Xin, et al. Joint hybrid caching and replacement scheme for UAV-assisted vehicular edge computing networks[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 866–878. doi: 10.1109/TIV.2023.3323217.
    [15] YAN Junjie, ZHAO Xiaohui, and LI Zan. Deep-reinforcement-learning-based computation offloading in UAV-assisted vehicular edge computing networks[J]. IEEE Internet of Things Journal, 2024, 11(11): 19882–19897. doi: 10.1109/JIOT.2024.3370553.
    [16] ZHANG Wenqian, LÜ Zilong, GE Mengxia, et al. UAV-assisted vehicular edge computing system: Min-max fair offloading and position optimization[J]. IEEE Transactions on Consumer Electronics, 2024. doi: 10.1109/TCE.2024.3426513. (查阅网上资料,未找到本条文献卷期、页码信息,请确认) .
    [17] HAN Zihao, ZHOU Ting, XU Tianheng, et al. Joint user association and deployment optimization for delay-minimized UAV-aided MEC networks[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1791–1795. doi: 10.1109/LWC.2023.3294749.
    [18] FIROZJAE H M, MOGHADDAM J Z, and ARDEBILIPOUR M. A joint trajectory and energy harvesting method for an UAV enabled disaster response network[C]. 13th International Conference on Information and Knowledge Technology, Karaj, Iran, 2022: 1–5. doi: 10.1109/IKT57960.2022.10039000.
    [19] ZHANG Ning, LIU Juan, XIE Lingfu, et al. A deep reinforcement learning approach to energy-harvesting UAV-aided data collection[C]. 2020 International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2020: 93–98. doi: 10.1109/WCSP49889.2020.9299806.
    [20] YANG Zheyuan, BI Suzhi, and ZHANG Y J A. Dynamic offloading and trajectory control for UAV-enabled mobile edge computing system with energy harvesting devices[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10515–10528. doi: 10.1109/TWC.2022.3184953.
    [21] CHANG Zheng, LIU Liqing, GUO Xijuan, et al. Dynamic resource allocation and computation offloading for IoT fog computing system[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3348–3357. doi: 10.1109/TII.2020.2978946.
    [22] DAI Xingxia, XIAO Zhu, JIANG Hongbo, et al. UAV-assisted task offloading in vehicular edge computing networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(4): 2520–2534. doi: 10.1109/TMC.2023.3259394.
    [23] WANG Feng, XU Jie, WANG Xin, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1784–1797. doi: 10.1109/TWC.2017.2785305.
    [24] YUE Yuchen and WANG Junhua. Lyapunov-based dynamic computation offloading optimization in heterogeneous vehicular networks[C]. 2022 IEEE International Symposium on Product Compliance Engineering - Asia, Guangzhou, China, 2022: 1–6. doi: 10.1109/ISPCE-ASIA57917.2022.9971076.
    [25] TREIBER M and KESTING A. Traffic Flow Dynamics: Data, Models and Simulation[M]. Berlin: Springer, 2013. doi: 10.1007/978-3-642-32460-4. (查阅网上资料,未找到本条文献页码信息,请补充) .
    [26] HUANG Liang, BI Suzhi, and ZHANG Y J A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2020, 19(11): 2581–2593. doi: 10.1109/TMC.2019.2928811.
    [27] DAGANZO C F. Traffic flow theory[M]. DAGANZO C F. Fundamentals of Transportation and Traffic Operations. Oxford: Pergamon, 1997: 66–160. doi: 10.1108/ 9780585475301-004.
    [28] SHI Weisen, LI Junling, CHENG Nan, et al. Multi-drone 3-D trajectory planning and scheduling in drone-assisted radio access networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8145–8158. doi: 10.1109/TVT.2019.2925629.
    [29] SUN Yukun and ZHANG Xing. A2C learning for tasks segmentation with cooperative computing in edge computing networks[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 2236–2241. doi: 10.1109/GLOBECOM48099.2022.10000948.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  8
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-12-18
  • 网络出版日期:  2024-12-23

目录

    /

    返回文章
    返回