高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最大安全近邻与局部密度的自适应过采样方法

赵小强 何嘉琦

赵小强, 何嘉琦. 基于最大安全近邻与局部密度的自适应过采样方法[J]. 电子与信息学报, 2025, 47(4): 1140-1149. doi: 10.11999/JEIT240441
引用本文: 赵小强, 何嘉琦. 基于最大安全近邻与局部密度的自适应过采样方法[J]. 电子与信息学报, 2025, 47(4): 1140-1149. doi: 10.11999/JEIT240441
ZHAO Xiaoqiang, HE Jiaqi. Adaptive Oversampling Method Based on Maximum Safe Nearest Neighbor and Local Density[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1140-1149. doi: 10.11999/JEIT240441
Citation: ZHAO Xiaoqiang, HE Jiaqi. Adaptive Oversampling Method Based on Maximum Safe Nearest Neighbor and Local Density[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1140-1149. doi: 10.11999/JEIT240441

基于最大安全近邻与局部密度的自适应过采样方法

doi: 10.11999/JEIT240441
基金项目: 国家自然科学基金(62263021),甘肃省高校产业支撑计划(2023CYZC-24)
详细信息
    作者简介:

    赵小强:男,教授,研究方向为故障诊断、数据挖掘和图像处理等

    何嘉琦:男,硕士生,研究方向为数据挖掘、不平衡数据分类

    通讯作者:

    赵小强 xqzhao@lut.edu.cn

  • 中图分类号: TN911; TP274; TP181

Adaptive Oversampling Method Based on Maximum Safe Nearest Neighbor and Local Density

Funds: The National Natural Science Foundation of China (62263021), The College Industrial Support Project of Gansu Province (2023CYZC-24)
  • 摘要: 针对不平衡数据过采样的过程中如何合成有效新样本的问题,该文提出一种基于最大安全近邻与局部密度的自适应过采样方法。该方法利用最大安全近邻和局部密度将少数类样本划分为安全样本、边界样本和离群点;在此基础上,通过组合加权设置样本的采样概率,使得靠近边界的“次边界样本”更容易被选择为根样本,并且自适应地调整K近邻的参数K,选择最优合成区域;针对离群点,采用超球面内的随机过采样策略,进一步增加少数类样本的多样性。最后,将所提方法与合成少数类过采样技术(SMOTE)、自适应合成采样方法(ADASYN)等6种过采样方法在13个公开数据集上进行实验分析,结果表明,所提方法相对于对比方法在F1分数(F1-score)指标上分别平均提高了6.9%, 8.8%, 8.2%, 5.8%, 7.2%和12.5%,在几何平均值(G-mean)指标上分别平均提高了3.0%, 2.5%, 3.0%, 3.2%, 5.3%和8.6%,证明所提方法可以有效解决不平衡数据分类问题。
  • 图  1  参数K对SMOTE的影响

    图  2  边界样本识别示意图

    图  3  过采样过程示意图

    表  1  不平衡数据集信息

    数据集样本数特征数特征属性(R/I/N)不平衡比
    wisconsin6839(0/9/0)1.86
    pima7688(8/0/0)1.87
    yeast114848(8/0/0)2.46
    haberman3063(0/3/0)2.78
    vehicle084618(0/18/0)3.25
    new-thyroid22155(4/1/0)5.14
    glass62149(9/0/0)6.38
    yeast314848(8/0/0)8.10
    ecoli33367(7/0/0)8.60
    abalone9-187318(7/0/1)16.4
    glass52149(9/0/0)22.78
    yeast414848(8/0/0)28.10
    yeast518488(8/0/0)32.73
    下载: 导出CSV

    表  2  二分类混淆矩阵

    类别预测为正样本预测为负样本
    实际正样本TPFN
    实际负样本FPTN
    下载: 导出CSV

    表  3  指标随调节系数$\alpha $的变化情况

    数据集 评价指标 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
    yeast1 F1-score 0.572 0.580 0.584 0.591 0.589 0.586 0.579 0.576
    G-mean 0.662 0.698 0.708 0.711 0.709 0.706 0.700 0.697
    glass6 F1-score 0.754 0.754 0.766 0.779 0.779 0.733 0.779 0.757
    G-mean 0.905 0.905 0.908 0.911 0.911 0.884 0.911 0.889
    ecoli3 F1-score 0.614 0.628 0.633 0.639 0.613 0.619 0.626 0.619
    G-mean 0.893 0.896 0.898 0.900 0.893 0.894 0.886 0.873
    abalone9-18 F1-score 0.307 0.372 0.380 0.399 0.414 0.403 0.425 0.419
    G-mean 0.714 0.794 0.787 0.795 0.785 0.773 0.778 0.777
    glass5 F1-score 0.395 0.395 0.411 0.434 0.425 0.411 0.356 0.370
    G-mean 0.882 0.882 0.887 0.892 0.934 0.886 0.827 0.830
    vehicle0 F1-score 0.879 0.882 0.888 0.885 0.891 0.894 0.899 0.893
    G-mean 0.953 0.953 0.953 0.953 0.955 0.958 0.961 0.956
    下载: 导出CSV

    表  4  不同权重调节系数$ \lambda $下的指标

    数据集 评价指标 (0.2,0.8) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.8,0.2)
    ecoli3 AUC 0.936 0.940 0.936 0.938 0.936
    F1-score 0.616 0.630 0.610 0.610 0.630
    G-mean 0.895 0.898 0.893 0.893 0.895
    yeast1 AUC 0.793 0.795 0.794 0.793 0.792
    F1-score 0.592 0.598 0.592 0.600 0.597
    G-mean 0.715 0.721 0.714 0.720 0.718
    yeast3 AUC 0.972 0.973 0.972 0.973 0.973
    F1-score 0.732 0.766 0.756 0.765 0.768
    G-mean 0.905 0.909 0.905 0.901 0.899
    glass6 AUC 0.961 0.963 0.963 0.965 0.963
    F1-score 0.887 0.871 0.856 0.905 0.886
    G-mean 0.920 0.917 0.914 0.937 0.919
    wisconsin AUC 0.994 0.994 0.995 0.994 0.963
    F1-score 0.922 0.931 0.930 0.928 0.927
    G-mean 0.970 0.976 0.973 0.972 0.967
    下载: 导出CSV

    表  5  其他采样算法的指标对比

    数据集 采样方法 LR SVM
    Acc AUC F1-score G-mean MCC Acc AUC F1-score G-mean MCC
    wisconsin SMOTE 0.971 0.996 0.959 0.970 0.936 0.971 0.988 0.959 0.974 0.938
    ADASYN 0.972 0.996 0.961 0.975 0.941 0.969 0.985 0.958 0.975 0.936
    BSMOTE 0.972 0.996 0.962 0.976 0.939 0.971 0.984 0.960 0.974 0.939
    NaN-SMOTE 0.974 0.996 0.963 0.974 0.943 0.969 0.986 0.958 0.972 0.935
    SMOTE-NaN-DE 0.969 0.996 0.956 0.966 0.933 0.972 0.989 0.961 0.971 0.939
    SADCO 0.972 0.996 0.961 0.972 0.940 0.971 0.986 0.960 0.974 0.938
    本文方法 0.974 0.996 0.963 0.974 0.943 0.972 0.989 0.962 0.976 0.941
    pima SMOTE 0.744 0.829 0.663 0.737 0.465 0.759 0.839 0.692 0.761 0.507
    ADASYN 0.742 0.831 0.668 0.742 0.469 0.753 0.840 0.691 0.760 0.503
    BSMOTE 0.739 0.829 0.670 0.743 0.469 0.738 0.836 0.682 0.751 0.485
    NaN-SMOTE 0.719 0.832 0.680 0.742 0.479 0.723 0.835 0.685 0.746 0.489
    SMOTE-NaN-DE 0.733 0.818 0.622 0.703 0.419 0.754 0.823 0.629 0.706 0.450
    SADCO 0.767 0.830 0.623 0.696 0.470 0.771 0.834 0.636 0.709 0.480
    本文方法 0.767 0.833 0.690 0.760 0.499 0.738 0.839 0.694 0.759 0.504
    yeast1 SMOTE 0.708 0.787 0.581 0.703 0.380 0.687 0.792 0.589 0.701 0.388
    ADASYN 0.681 0.786 0.584 0.705 0.379 0.650 0.786 0.581 0.692 0.375
    BSMOTE 0.685 0.785 0.581 0.705 0.376 0.650 0.784 0.578 0.690 0.371
    NaN-SMOTE 0.679 0.788 0.584 0.705 0.380 0.666 0.786 0.587 0.703 0.385
    SMOTE-NaN-DE 0.728 0.781 0.558 0.681 0.364 0.730 0.788 0.575 0.692 0.395
    SADCO 0.726 0.752 0.521 0.644 0.333 0.739 0.736 0.440 0.563 0.298
    本文方法 0.720 0.790 0.593 0.715 0.400 0.722 0.795 0.597 0.718 0.405
    haberman SMOTE 0.676 0.653 0.437 0.594 0.217 0.688 0.688 0.431 0.586 0.270
    ADASYN 0.663 0.650 0.440 0.592 0.215 0.693 0.670 0.467 0.581 0.250
    BSMOTE 0.660 0.612 0.436 0.592 0.202 0.716 0.687 0.434 0.590 0.260
    NaN-SMOTE 0.667 0.658 0.437 0.595 0.209 0.703 0.670 0.410 0.561 0.219
    SMOTE-NaN-DE 0.722 0.609 0.409 0.554 0.236 0.729 0.676 0.422 0.561 0.263
    SADCO 0.546 0.633 0.436 0.576 0.151 0.490 0.461 0.438 0.540 0.139
    本文方法 0.677 0.680 0.518 0.667 0.306 0.630 0.703 0.505 0.640 0.284
    vehicle0 SMOTE 0.930 0.984 0.872 0.952 0.839 0.962 0.995 0.926 0.973 0.905
    ADASYN 0.923 0.978 0.860 0.947 0.824 0.955 0.994 0.914 0.970 0.890
    BSMOTE 0.913 0.976 0.851 0.951 0.812 0.959 0.993 0.920 0.973 0.898
    NaN-SMOTE 0.936 0.985 0.881 0.954 0.849 0.963 0.995 0.928 0.972 0.908
    SMOTE-NaN-DE 0.918 0.979 0.853 0.942 0.814 0.952 0.992 0.907 0.966 0.881
    SADCO 0.922 0.968 0.855 0.936 0.813 0.950 0.990 0.905 0.967 0.880
    本文方法 0.944 0.986 0.895 0.960 0.866 0.967 0.995 0.935 0.976 0.916
    new-thyroid2 SMOTE 0.977 0.998 0.927 0.961 0.915 0.981 0.998 0.948 0.989 0.940
    ADASYN 0.967 0.998 0.910 0.969 0.895 0.967 0.998 0.913 0.980 0.901
    BSMOTE 0.963 0.998 0.898 0.966 0.882 0.963 0.998 0.904 0.977 0.956
    NaN-SMOTE 0.963 0.997 0.863 0.874 0.857 0.977 0.997 0.925 0.949 0.912
    SMOTE-NaN-DE 0.977 0.998 0.923 0.937 0.912 0.986 0.997 0.962 0.992 0.956
    SADCO 0.953 0.989 0.824 0.840 0.820 0.977 0.997 0.921 0.925 0.912
    本文方法 0.981 0.998 0.939 0.952 0.929 0.991 0.998 0.973 0.994 0.989
    glass6 SMOTE 0.925 0.954 0.757 0.890 0.727 0.972 0.948 0.886 0.934 0.876
    ADASYN 0.916 0.952 0.743 0.902 0.714 0.967 0.913 0.873 0.931 0.861
    BSMOTE 0.935 0.949 0.772 0.883 0.741 0.967 0.904 0.862 0.900 0.852
    NaN-SMOTE 0.935 0.959 0.790 0.895 0.766 0.967 0.967 0.848 0.875 0.840
    SMOTE-NaN-DE 0.935 0.952 0.786 0.895 0.758 0.949 0.958 0.820 0.908 0.793
    SADCO 0.898 0.957 0.716 0.890 0.687 0.953 0.960 0.825 0.906 0.802
    本文方法 0.935 0.951 0.792 0.913 0.767 0.981 0.968 0.920 0.940 0.913
    yeast3 SMOTE 0.908 0.967 0.679 0.894 0.651 0.931 0.971 0.736 0.904 0.710
    ADASYN 0.887 0.968 0.651 0.917 0.638 0.906 0.971 0.694 0.925 0.679
    BSMOTE 0.876 0.966 0.623 0.910 0.618 0.902 0.970 0.682 0.920 0.666
    NaN-SMOTE 0.910 0.967 0.678 0.884 0.648 0.933 0.971 0.747 0.913 0.723
    SMOTE-NaN-DE 0.919 0.967 0.701 0.892 0.671 0.939 0.972 0.759 0.908 0.734
    SADCO 0.909 0.965 0.674 0.881 0.643 0.919 0.970 0.708 0.892 0.680
    本文方法 0.919 0.968 0.699 0.892 0.670 0.940 0.973 0.761 0.903 0.795
    ecoli3 SMOTE 0.869 0.937 0.595 0.888 0.579 0.872 0.938 0.598 0.890 0.583
    ADASYN 0.851 0.933 0.572 0.889 0.562 0.860 0.935 0.576 0.883 0.561
    BSMOTE 0.860 0.930 0.585 0.895 0.576 0.881 0.943 0.622 0.907 0.611
    NaN-SMOTE 0.863 0.943 0.577 0.873 0.556 0.881 0.944 0.608 0.883 0.586
    SMOTE-NaN-DE 0.860 0.938 0.579 0.883 0.564 0.884 0.942 0.621 0.896 0.605
    SADCO 0.857 0.932 0.576 0.881 0.560 0.863 0.938 0.581 0.884 0.566
    本文方法 0.890 0.938 0.640 0.900 0.622 0.902 0.940 0.665 0.907 0.647
    下载: 导出CSV

    表  6  高不平衡比数据集上采样算法的指标对比

    数据集 采样方法 LR SVM
    Acc AUC F1-score G-mean MCC Acc AUC F1-score G-mean MCC
    abalone9-18 SMOTE 0.835 0.890 0.338 0.774 0.336 0.852 0.892 0.384 0.820 0.393
    ADASYN 0.827 0.894 0.328 0.770 0.327 0.847 0.894 0.378 0.829 0.393
    BSMOTE 0.841 0.857 0.313 0.734 0.304 0.859 0.853 0.318 0.706 0.295
    NaN-SMOTE 0.858 0.890 0.361 0.779 0.355 0.866 0.886 0.376 0.775 0.367
    SMOTE-NaN-DE 0.891 0.854 0.330 0.652 0.295 0.885 0.849 0.341 0.688 0.323
    SADCO 0.824 0.804 0.284 0.706 0.263 0.854 0.872 0.303 0.689 0.277
    本文方法 0.870 0.883 0.411 0.817 0.413 0.885 0.892 0.424 0.811 0.421
    glass5 SMOTE 0.860 0.937 0.324 0.821 0.356 0.949 0.963 0.573 0.863 0.597
    ADASYN 0.851 0.924 0.309 0.816 0.343 0.949 0.968 0.573 0.863 0.597
    BSMOTE 0.855 0.937 0.316 0.818 0.350 0.944 0.968 0.547 0.860 0.574
    NaN-SMOTE 0.869 0.929 0.378 0.878 0.424 0.944 0.912 0.520 0.805 0.535
    SMOTE-NaN-DE 0.865 0.936 0.333 0.823 0.366 0.930 0.961 0.480 0.854 0.497
    SADCO 0.860 0.905 0.242 0.583 0.228 0.935 0.978 0.535 0.911 0.563
    本文方法 0.879 0.937 0.425 0.934 0.486 0.949 0.960 0.573 0.862 0.597
    yeast4 SMOTE 0.858 0.876 0.260 0.786 0.294 0.870 0.896 0.277 0.794 0.310
    ADASYN 0.840 0.874 0.247 0.800 0.289 0.852 0.893 0.247 0.774 0.278
    BSMOTE 0.885 0.868 0.305 0.799 0.335 0.904 0.885 0.338 0.798 0.360
    NaN-SMOTE 0.861 0.879 0.266 0.788 0.299 0.873 0.892 0.276 0.785 0.305
    SMOTE-NaN-DE 0.892 0.865 0.315 0.803 0.344 0.900 0.886 0.334 0.805 0.361
    SADCO 0.836 0.859 0.246 0.796 0.287 0.860 0.873 0.267 0.787 0.299
    本文方法 0.894 0.870 0.324 0.804 0.351 0.908 0.888 0.354 0.809 0.378
    yeast5 SMOTE 0.934 0.985 0.478 0.965 0.541 0.946 0.985 0.530 0.972 0.584
    ADASYN 0.931 0.985 0.457 0.964 0.532 0.945 0.986 0.527 0.971 0.581
    BSMOTE 0.930 0.984 0.463 0.963 0.529 0.944 0.986 0.520 0.971 0.576
    NaN-SMOTE 0.939 0.985 0.491 0.967 0.552 0.945 0.981 0.521 0.961 0.572
    SMOTE-NaN-DE 0.935 0.986 0.483 0.966 0.545 0.945 0.986 0.524 0.971 0.579
    SADCO 0.944 0.986 0.520 0.971 0.576 0.937 0.986 0.593 0.967 0.554
    本文方法 0.945 0.985 0.524 0.971 0.579 0.949 0.985 0.546 0.973 0.597
    下载: 导出CSV
  • [1] 李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673–688. doi: 10.13195/j.kzyjc.2018.0865.

    LI Yanxia, CHAI Yi, HU Youqiang, et al. Review of imbalanced data classification methods[J]. Control and Decision, 2019, 34(4): 673–688. doi: 10.13195/j.kzyjc.2018.0865.
    [2] GUO Haixiang, LI Yijing, SHANG J, et al. Learning from class-imbalanced data: Review of methods and applications[J]. Expert Systems with Applications, 2017, 73: 220–239. doi: 10.1016/j.eswa.2016.12.035.
    [3] SHIN K, HAN J, and KANG S. MI-MOTE: Multiple imputation-based minority oversampling technique for imbalanced and incomplete data classification[J]. Information Sciences, 2021, 575: 80–89. doi: 10.1016/j.ins.2021.06.043.
    [4] 苏逸, 李晓军, 姚俊萍, 等. 不平衡数据分类数据层面方法: 现状及研究进展[J]. 计算机应用研究, 2023, 40(1): 11–19. doi: 10.19734/j.issn.1001-3695.2022.05.0250.

    SU Yi, LI Xiaojun, YAO Junping, et al. Data-level methods of imbalanced data classification: Status and research development[J]. Application Research of Computers, 2023, 40(1): 11–19. doi: 10.19734/j.issn.1001-3695.2022.05.0250.
    [5] THABTAH F, HAMMOUD S, KAMALOV F, et al. Data imbalance in classification: Experimental evaluation[J]. Information Sciences, 2020, 513: 429–441. doi: 10.1016/j.ins.2019.11.004.
    [6] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953.
    [7] ABDI L and HASHEMI S. To combat multi-class imbalanced problems by means of over-sampling techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 238–251. doi: 10.1109/TKDE.2015.2458858.
    [8] CHEN Baiyun, XIA Shuyin, CHEN Zizhong, et al. RSMOTE: A self-adaptive robust SMOTE for imbalanced problems with label noise[J]. Information Sciences, 2021, 553: 397–428. doi: 10.1016/j.ins.2020.10.013.
    [9] HAN Hui, WANG Wenyuan, and MAO Binghuan. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]. The International Conference on Intelligent Computing Advances in Intelligent Computing, Hefei, China, 2005: 878–887. doi: 10.1007/11538059_91.
    [10] HE Haibo, BAI Yang, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 1322–1328. doi: 10.1109/IJCNN.2008.4633969.
    [11] SOLTANZADEH P and HASHEMZADEH M. RCSMOTE: Range-Controlled synthetic minority over-sampling technique for handling the class imbalance problem[J]. Information Sciences, 2021, 542: 92–111. doi: 10.1016/j.ins.2020.07.014.
    [12] XU Zhaozhao, SHEN Derong, NIE Tiezheng, et al. A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data[J]. Information Sciences, 2021, 572: 574–589. doi: 10.1016/j.ins.2021.02.056.
    [13] 高雷阜, 张梦瑶, 赵世杰. 融合簇边界移动与自适应合成的混合采样算法[J]. 电子学报, 2022, 50(10): 2517–2529. doi: 10.12263/DZXB.20210265.

    GAO Leifu, ZHANG Mengyao, and ZHAO Shijie. Mixed-sampling algorithm combining cluster boundary movement and adaptive synthesis[J]. Acta Electronica Sinica, 2022, 50(10): 2517–2529. doi: 10.12263/DZXB.20210265.
    [14] 黄海松, 魏建安, 康佩栋. 基于不平衡数据样本特性的新型过采样SVM分类算法[J]. 控制与决策, 2018, 33(9): 1549–1558. doi: 10.13195/j.kzyjc.2017.0649.

    HUANG Haisong, WEI Jian’an, and KANG Peidong. New over-sampling SVM classification algorithm based on unbalanced data sample characteristics[J]. Control and Decision, 2018, 33(9): 1549–1558. doi: 10.13195/j.kzyjc.2017.0649.
    [15] SHI Shengnan, LI Jie, ZHU Dan, et al. A hybrid imbalanced classification model based on data density[J]. Information Sciences, 2023, 624: 50–67. doi: 10.1016/j.ins.2022.12.046.
    [16] TAO Xinmin, GUO Xinyue, ZHENG Yujia, et al. Self-adaptive oversampling method based on the complexity of minority data in imbalanced datasets classification[J]. Knowledge-Based Systems, 2023, 277: 110795. doi: 10.1016/j.knosys.2023.110795.
    [17] 周玉, 岳学震, 刘星, 等. 不平衡数据集的自然邻域超球面过采样方法[J]. 哈尔滨工业大学学报, 2024, 56(12): 81–95. doi: 10.11918/202311030.

    ZHOU Yu, YUE Xuezhen, LIU Xing, et al. A natural neighborhood hypersphere oversampling method for imbalanced data sets[J]. Journal of Harbin Institute of Technology, 2024, 56(12): 81–95. doi: 10.11918/202311030.
    [18] LENG Qiangkui, GUO Jiamei, JIAO Erjie, et al. NanBDOS: Adaptive and parameter-free borderline oversampling via natural neighbor search for class-imbalance learning[J]. Knowledge-Based Systems, 2023, 274: 110665. doi: 10.1016/j.knosys.2023.110665.
    [19] THEJAS G S, HARIPRASAD Y, IYENGAR S S, et al. An extension of Synthetic Minority Oversampling Technique based on Kalman filter for imbalanced datasets[J]. Machine Learning with Applications, 2022, 8: 100267. doi: 10.1016/j.mlwa.2022.100267.
    [20] 胡峰, 王蕾, 周耀. 基于三支决策的不平衡数据过采样方法[J]. 电子学报, 2018, 46(1): 135–144. doi: 10.3969/j.issn.0372-2112.2018.01.019.

    HU Feng, WANG Lei, and ZHOU Yao. An oversampling method for imbalance data based on three-way decision model[J]. Acta Electronica Sinica, 2018, 46(1): 135–144. doi: 10.3969/j.issn.0372-2112.2018.01.019.
    [21] ALCALÁ-FDEZ J, SÁNCHEZ L, GARCÍA S, et al. KEEL: A software tool to assess evolutionary algorithms for data mining problems[J]. Soft Computing, 2009, 13(3): 307–318. doi: 10.1007/s00500-008-0323-y.
    [22] LI Junnan, ZHU Qingsheng, WU Quanwang, et al. A novel oversampling technique for class-imbalanced learning based on SMOTE and natural neighbors[J]. Information Sciences, 2021, 565: 438–455. doi: 10.1016/j.ins.2021.03.041.
    [23] LI Junnan, ZHU Qingsheng, WU Quanwang, et al. SMOTE-NaN-DE: Addressing the noisy and borderline examples problem in imbalanced classification by natural neighbors and differential evolution[J]. Knowledge-Based Systems, 2021, 223: 107056. doi: 10.1016/j.knosys.2021.107056.
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  39
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2025-03-30
  • 网络出版日期:  2025-04-11
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回