高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LGDNet:结合局部和全局特征的表格检测网络

卢迪 袁璇

卢迪, 袁璇. LGDNet:结合局部和全局特征的表格检测网络[J]. 电子与信息学报. doi: 10.11999/JEIT240428
引用本文: 卢迪, 袁璇. LGDNet:结合局部和全局特征的表格检测网络[J]. 电子与信息学报. doi: 10.11999/JEIT240428
LU Di, YUAN Xuan. LGDNet: Table Detection Network Combining Local and Global Features[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240428
Citation: LU Di, YUAN Xuan. LGDNet: Table Detection Network Combining Local and Global Features[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240428

LGDNet:结合局部和全局特征的表格检测网络

doi: 10.11999/JEIT240428
详细信息
    作者简介:

    卢迪:女,教授,博士,研究方向为数据融合、图像处理等

    袁璇:女,硕士生,研究方向为图像处理、表格检测等

    通讯作者:

    卢迪 ludizeng@hrbust.edu.cn

  • 中图分类号: TN911.73

LGDNet: Table Detection Network Combining Local and Global Features

  • 摘要: 在大数据时代,表格广泛存在于各类文档图像中,进行表格检测对于表格信息再利用具有重要意义。针对现有的基于卷积神经网络的表格检测算法存在感受野受限、依赖于预设的候选区域以及表格边界定位不准确等问题,该文提出一种基于 DINO模型的表格检测网络。首先,设计一种图像预处理方法,旨在增强表格的角点和线特征,以更好地区分表格与文本等其他文档元素。其次,设计一种主干网络SwTNet-50,通过在ResNet中引入Swin Transformer Blocks (STB),有效地进行局部-全局特征信息的提取,提高模型的特征提取能力以及对表格边界的检测准确性。最后,为了弥补DINO模型在1对1匹配中编码器特征学习不足问题,采用协同混合匹配训练策略,提高编码器的特征学习能力,提升模型检测精度。与多种基于深度学习的表格检测方法进行对比,该文模型在表格检测数据集TNCR上优于对比算法,在IoU阈值为0.5, 0.75和0.9时F1-Score分别达到98.2%, 97.4%和93.3%。在IIIT-AR-13K数据集上,IoU阈值为0.5时F1-Score为98.6%。
  • 图  1  DINO模型网络结构

    图  2  LGDNet结构

    图  3  文档图像预处理过程

    图  4  SwTNet-50主干网络

    图  5  一对多匹配辅助分支

    图  6  TNCR数据集中5种类型的表格图像

    图  7  Full lined类型表格检测结果

    图  11  Partial lined and Merged cells类型表格检测结果

    图  9  Partial lined类型表格检测结果

    图  8  Merged cells类型表格检测结果

    图  10  No lines类型表格检测结果

    表  1  辅助头信息

    辅助头i 匹配方式Ai
    {pos}, {neg}生成规则 Pi生成规则 $B_i^{\left\{ {{\text{pos}}} \right\}}$生成规则
    Faster R-CNN {pos}:IoU(proposal, gt)>0.5
    {neg}:IoU(proposal, gt)<0.5
    {pos}:gt labels, offset(proposal, gt)
    {neg}:gt labels
    positive proposals
    $\left( {{x_1}, {y_1}, {x_2}, {y_2}} \right)$
    ATSS {pos}:IoU(anchor, gt)>(mean+std)
    {neg}:IoU(anchor, gt)<(mean+std)
    {pos}:gt labels, offset(anchor, gt), centerness
    {neg}:gt labels
    positive anchors
    $\left( {{x_1}, {y_1}, {x_2}, {y_2}} \right)$
    下载: 导出CSV

    表  2  TNCR, IIIT-AR-13K数据集上的对比实验结果(%)

    数据集 网络模型 F1-Score
    IoU@0.5 IoU@0.75 IoU@0.9
    TNCR Cascade Mask R-CNN[12] 93.1 92.1 86.6
    DiffusionDet[20] 95.5 93.9 88.5
    Deformable DETR[17] 94.5 93.7 89.3
    DINO[21] 94.6 91.4 90.1
    Sparse R-CNN[19] 95.2 94.8 90.9
    本文 98.2 97.4 93.3
    IIIT-AR-13K Faster R-CNN[8] 93.7
    Mask R-CNN[25] 97.1
    DINO[21] 97.4
    本文 98.6
    下载: 导出CSV

    表  3  主干网络对比实验结果(%)

    网络模型主干网络F1-Score
    IoU@0.5IoU@0.75IoU@0.9
    DINO[21]ResNet5093.590.689.7
    Swin Transformer94.691.490.1
    本文SwTNet-5095.893.691.1
    下载: 导出CSV

    表  4  消融实验结果(%)

    序号网络模型F1-Score
    IoU@0.5IoU@0.75IoU@0.9
    1DINO[21]94.691.490.1
    2DINO+文档图像预处理(DINO_DIP)95.292.090.5
    3DINO_DIP+SwTNet-5096.894.291.7
    4DINO_DIP+一对多匹配辅助分支97.596.792.8
    5LGDNet(DINO_DIP+SwTNet-50+一对多匹配辅助分支)98.297.493.3
    下载: 导出CSV
  • [1] 高良才, 李一博, 都林, 等. 表格识别技术研究进展[J]. 中国图象图形学报, 2022, 27(6): 1898–1917. doi: 10.11834/jig.220152.

    GAO Liangcai, LI Yibo, DU Lin, et al. A survey on table recognition technology[J]. Journal of Image and Graphics, 2022, 27(6): 1898–1917. doi: 10.11834/jig.220152.
    [2] WATANABE T, LUO Qin, and SUGIE N. Structure recognition methods for various types of documents[J]. Machine Vision and Applications, 1993, 6(2/3): 163–176. doi: 10.1007/BF01211939.
    [3] GATOS B, DANATSAS D, PRATIKAKIS I, et al. Automatic table detection in document images[C]. The Third International Conference on Advances in Pattern Recognition, Bath, UK, 2005: 609–618. doi: 10.1007/11551188_67.
    [4] KASAR T, BARLAS P, ADAM S, et al. Learning to detect tables in scanned document images using line information[C]. 2013 12th International Conference on Document Analysis and Recognition, Washington, USA, 2013: 1185–1189. doi: 10.1109/ICDAR.2013.240.
    [5] ANH T, IN-SEOP N, and SOO-HYUNG K. A hybrid method for table detection from document image[C]. 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 2015: 131–135. doi: 10.1109/ACPR.2015.7486480.
    [6] LEE K H, CHOY Y C, and CHO S B. Geometric structure analysis of document images: A knowledge-based approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1224–1240. doi: 10.1109/34.888708.
    [7] SCHREIBER S, AGNE S, WOLF I, et al. DeepDeSRT: Deep learning for detection and structure recognition of tables in document images[C]. 2017 14th IAPR International Conference on Document Analysis and Recognition, Kyoto, Japan, 2017: 1162–1167. doi: 10.1109/ICDAR.2017.192.
    [8] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [9] ARIF S and SHAFAIT F. Table detection in document images using foreground and background features[C]. 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 2018: 1–8. doi: 10.1109/DICTA.2018.8615795.
    [10] SIDDIQUI S A, MALIK M I, AGNE S, et al. DeCNT: Deep deformable CNN for table detection[J]. IEEE Access, 2018, 6: 74151–74161. doi: 10.1109/ACCESS.2018.2880211.
    [11] SUN Ningning, ZHU Yuanping, and HU Xiaoming. Faster R-CNN based table detection combining corner locating[C]. 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 2019: 1314–1319. doi: 10.1109/ICDAR.2019.00212.
    [12] CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 6154–6162. doi: 10.1109/CVPR.2018.00644.
    [13] PRASAD D, GADPAL A, KAPADNI K, et al. CascadeTabNet: An approach for end to end table detection and structure recognition from image-based documents[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, USA, 2020: 2439–2447. doi: 10.1109/CVPRW50498.2020.00294.
    [14] AGARWAL M, MONDAL A, and JAWAHAR C V. CDeC-Net: Composite deformable cascade network for table detection in document images[C]. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021: 9491–9498. doi: 10.1109/ICPR48806.2021.9411922.
    [15] HUANG Yilun, YAN Qinqin, LI Yibo, et al. A YOLO-based table detection method[C]. 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 2019: 813–818. doi: 10.1109/ICDAR.2019.00135.
    [16] SHEHZADI T, HASHMI K A, STRICKER D, et al. Towards end-to-end semi-supervised table detection with deformable transformer[C]. The 17th International Conference on Document Analysis and Recognition-ICDAR 2023, San José, USA, 2023: 51–76. doi: 10.1007/978-3-031-41679-8_4.
    [17] ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021.
    [18] XIAO Bin, SIMSEK M, KANTARCI B, et al. Table detection for visually rich document images[J]. Knowledge-Based Systems, 2023, 282: 111080. doi: 10.1016/j.knosys.2023.111080.
    [19] SUN Peize, ZHANG Rufeng, JIANG Yi, et al. Sparse R-CNN: End-to-end object detection with learnable proposals[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 14449–14458. doi: 10.1109/CVPR46437.2021.01422.
    [20] CHEN Shoufa, SUN Peize, SONG Yibing, et al. DiffusionDet: Diffusion model for object detection[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19773–19786. doi: 10.1109/ICCV51070.2023.01816.
    [21] ZHANG Hao, LI Feng, LIU Shilong, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[EB/OL]. https://arxiv.org/abs/2203.03605, 2022.
    [22] ZONG Zhuofan, SONG Guanglu, and LIU Yu. DETRs with collaborative hybrid assignments training[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 6748–6758. doi: 10.1109/ICCV51070.2023.00621.
    [23] ABDALLAH A, BERENDEYEV A, NURADIN I, et al. TNCR: Table net detection and classification dataset[J]. Neurocomputing, 2022, 473: 79–97. doi: 10.1016/j.neucom.2021.11.101.
    [24] MONDAL A, LIPPS P, and JAWAHAR C V. IIIT-AR-13K: A new dataset for graphical object detection in documents[C]. The 14th IAPR International Workshop, DAS 2020, Wuhan, China, 2020: 216-230. doi: 10.1007/978-3-030-57058-3_16.
    [25] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  45
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-30
  • 修回日期:  2024-11-08
  • 网络出版日期:  2024-11-18

目录

    /

    返回文章
    返回