高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面辅助的环境反向散射通信系统信道估计算法研究

徐勇军 邱友静 张海波

徐勇军, 邱友静, 张海波. 智能反射面辅助的环境反向散射通信系统信道估计算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT240395
引用本文: 徐勇军, 邱友静, 张海波. 智能反射面辅助的环境反向散射通信系统信道估计算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT240395
XU Yongjun, QIU Youjing, HANG Haibo. Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240395
Citation: XU Yongjun, QIU Youjing, HANG Haibo. Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240395

智能反射面辅助的环境反向散射通信系统信道估计算法研究

doi: 10.11999/JEIT240395
基金项目: 国家自然科学基金(62271094, U23A20279),重庆市自然科学基金重点项目(CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079),重庆市教委科技重点项目(KJZD-K202200601)
详细信息
    作者简介:

    徐勇军:男,教授,博士生导师,研究方向为反向散射通信、智能反射面、信道估计、资源分配等

    邱友静:女,硕士生,研究方向为反向散射通信、智能反射面、信道估计等

    张海波:男,副教授,硕士生导师,研究方向为资源分配、反向散射通信、车联网等

    通讯作者:

    徐勇军 xuyj@cqupt.edu.cn

  • 中图分类号: TN929.5

Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems

Funds: The National Natural Science Foundation of China (62271094, U23A20279), Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601)
  • 摘要: 环境反向散射通信(AmBC)是一种新型的低功耗通信技术,它能利用周围环境中的射频(RF)信号源实现无源信息传输,但由于其存在双重衰落、障碍物阻挡等问题,导致反射链路信号强度弱。为此,该文将智能反射面(IRS)引入到AmBC系统中用以增强反射链路增益。然而,IRS与标签均为无源器件使得信道估计极具挑战性。为此,该文提出了一种IRS辅助的AmBC系统信道估计方案。首先,将信道分解为多个子信道,其中,反射链路的每个子信道对应一个IRS反射单元。然后,将最小二乘(LS)法作为估计准则,以最小化均方误差(MSE)为目标,探索了IRS反射模式与信道估计的联合设计。仿真结果表明,该信道估计方案具有良好的估计性能。
  • 图  1  IRS辅助的AmBC系统

    图  2  直连信道均方误差随信噪比变化曲线

    图  3  级联信道均方误差随信噪比变化曲线

    图  4  直连信道均方误差随反射单元数变化曲线

    图  5  级联信道均方误差随反射单元数变化曲线

    图  6  直连信道均方误差随反射单元数变化曲线

    图  7  级联信道均方误差随反射单元数变化曲线

  • [1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2] 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.
    [3] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [4] GALAPPATHTHIGE D L, REZAEI F, TELLAMBURA C, et al. RIS-empowered ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2023, 12(1): 173–177. doi: 10.1109/LWC.2022.3220158.
    [5] LE A T, NGUYEN T N, TU L T, et al. Performance analysis of RIS-assisted ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2024, 13(3): 791–795. doi: 10.1109/LWC.2023.3344113.
    [6] 张晓茜, 徐勇军, 吴翠先, 等. 智能反射面增强的全双工环境反向散射通信系统波束成形算法[J]. 电子与信息学报, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.

    ZHANG Xiaoxi, XU Yongjun, WU Cuixian, et al. Beamforming design for reconfigurable intelligent surface enhanced full-duplex ambient backscatter communication networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.
    [7] YANG Hancheng, DING Haiyang, CAO Kunrui, et al. A RIS-segmented symbiotic ambient backscatter communication system[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 812–825. doi: 10.1109/TVT.2023.3306037.
    [8] MA Shuo, WANG Gongpu, FAN Rongfei, et al. Blind channel estimation for ambient backscatter communication systems[J]. IEEE Communications Letters, 2018, 22(6): 1296–1299. doi: 10.1109/LCOMM.2018.2817555.
    [9] ZHAO Wenjing, WANG Gongpu, ATAPATTU S, et al. Blind channel estimation in ambient backscatter communication systems with multiple-antenna reader[C]. Proceedings of 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 320–324. doi: 10.1109/ICCChina.2018.8641171.
    [10] ZHU Yue, WANG Gongpu, TANG Hengliang, et al. Channel estimation for ambient backscatter systems over frequency-selective channels[C]. Proceedings of 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 384–388. doi: 10.1109/ICCChina.2018.8641250.
    [11] LIU Xuemeng, LIU Chang, LI Yonghui, et al. Deep residual learning-assisted channel estimation in ambient backscatter communications[J]. IEEE Wireless Communications Letters, 2021, 10(2): 339–343. doi: 10.1109/LWC.2020.3030222.
    [12] ABDALLAH S, SALAMEH A I, and SAAD M. Joint channel, carrier frequency offset and I/Q imbalance estimation in ambient backscatter communication systems[J]. IEEE Communications Letters, 2021, 25(7): 2250–2254. doi: 10.1109/LCOMM.2021.3075493.
    [13] ABDALLAH S, VERBOVEN Z, SAAD M, et al. Channel estimation for full-duplex multi-antenna ambient backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(5): 3059–3072. doi: 10.1109/TCOMM.2023.3251387.
    [14] CUI Ziqi, WANG Gongpu, WEI Xusheng, et al. Channel estimation and optimal training design for ambient backscatter communication systems under sensitivity constraint[C]. Proceedings of 2022 IEEE 96th Vehicular Technology Conference, London, United Kingdom, 2022: 1–5. doi: 10.1109/VTC2022-Fall57202.2022.10012695.
    [15] CUI Ziqi, WANG Gongpu, GAO Jie, et al. Channel estimation for backscatter communication systems under circuit sensitivity constraint[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 7441–7446. doi: 10.1109/TVT.2023.3347926.
    [16] ABEYWICKRAMA S, YOU Changsheng, ZHANG Rui, et al. Channel estimation for intelligent reflecting surface assisted backscatter communication[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2519–2523. doi: 10.1109/LWC.2021.3106165.
    [17] LIN Junliang, WANG Gongpu, XU Rongtao, et al. Versatile-modulation and megabit-rate backscatter system: Design, implementation, and experimental results[J]. IEEE Internet of Things Journal, 2024, 11(5): 8240–8252. doi: 10.1109/JIOT.2023.3318634.
    [18] LI Dong. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering[J]. IEEE Transactions on Communications, 2020, 68(3): 1405–1416. doi: 10.1109/TCOMM.2019.2957490.
    [19] XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094.
    [20] D’AMICO A A and MORELLI M. Symbol-spaced feedforward techniques for blind bit synchronization and channel estimation in FSO-OOK communications[J]. IEEE Transactions on Communications, 2024, 72(1): 361–374. doi: 10.1109/TCOMM.2023.3317931.
    [21] GU Bowen, LI Dong, LIU Ye, et al. Exploiting constructive interference for backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4344–4359. doi: 10.1109/TCOMM.2023.3277519.
    [22] XIE Ning, XU Yuntao, ZHANG Jiaheng, et al. Joint estimation of channel responses and phase noises in asynchronous MIMO systems with intentional timing offset[J]. IEEE Transactions on Communications, 2023, 71(1): 412–426. doi: 10.1109/TCOMM.2022.3223711.
    [23] SENGIJPTA S K. Fundamentals of statistical signal processing: Estimation theory[J]. Technometrics, 1995, 37(4): 465–466. doi: 10.1080/00401706.1995.10484391.
    [24] MISHRA D and JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]. Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, 2019: 4659–4663. doi: 10.1109/ICASSP.2019.8683663.
    [25] JENSEN T L and DE CARVALHO E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]. Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 5000–5004. doi: 10.1109/ICASSP40776.2020.9053695.
    [26] ZHOU Zhengyi, GE Ning, WANG Zhaocheng, et al. Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decomposition-aided channel estimation approach[J]. IEEE Transactions on Communications, 2021, 69(2): 1228–1243. doi: 10.1109/TCOMM.2020.3034259.
  • 加载中
图(7)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  15
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-12-12

目录

    /

    返回文章
    返回