高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流形变换的信息几何雷达目标检测方法

杨政 程永强 吴昊 杨阳 黎湘 王宏强

杨政, 程永强, 吴昊, 杨阳, 黎湘, 王宏强. 基于流形变换的信息几何雷达目标检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT240286
引用本文: 杨政, 程永强, 吴昊, 杨阳, 黎湘, 王宏强. 基于流形变换的信息几何雷达目标检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT240286
YANG Zheng, CHENG Yongqiang, WU Hao, YANG Yang, LI Xiang, WANG Hongqiang. Manifold Transformation-based Information Geometry Radar Target Detection Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240286
Citation: YANG Zheng, CHENG Yongqiang, WU Hao, YANG Yang, LI Xiang, WANG Hongqiang. Manifold Transformation-based Information Geometry Radar Target Detection Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240286

基于流形变换的信息几何雷达目标检测方法

doi: 10.11999/JEIT240286
基金项目: 国家自然科学基金(61921001),湖南省杰出青年基金(2022JJ10063)
详细信息
    作者简介:

    杨政:男,博士生,研究方向为雷达目标检测与信息几何

    程永强:男,教授,研究方向为雷达目标检测、信息几何和雷达前视成像

    吴昊:男,讲师,研究方向为雷达目标检测与信息几何

    杨阳:男,博士生,研究方向为雷达前视成像

    黎湘:男,教授,研究方向为目标识别、信号检测和雷达成像

    王宏强:男,教授,研究方向为太赫兹技术、量子雷达和雷达目标特性

    通讯作者:

    程永强 nudtyqcheng@gmail.com

  • 中图分类号: TN957.51

Manifold Transformation-based Information Geometry Radar Target Detection Method

Funds: The National Natural Science Foundation of China (61921001), The Distinguished Youth Science Foundation of Hunan Province (2022JJ10063)
  • 摘要: 基于信息几何的目标检测方法为解决雷达目标检测问题提供了新的技术途径。该文以矩阵信息几何理论为基础,考虑复杂非均匀环境下,回波信杂比低,目标与杂波在矩阵流形上区分性差,导致传统信息几何检测器性能受限的问题,提出一种基于流形变换的信息几何检测器。具体地,该文建立了流形到流形映射变换,并提出待检测单元与杂波中心的几何距离联合优化方法,从而增强变换后流形上目标与杂波的区分性。通过仿真和实测数据验证,所提方法具有较好检测性能。基于仿真数据实验,当信杂比高于1 dB时,所提方法的检测概率可以达到60%以上,同时,实测数据验证结果表明,当检测概率达到80%时,相较于传统信息几何检测器,该文所提检测器能够提升检测信杂比为3~6 dB。
  • 图  1  杂波概率分布拟合

    图  2  不同场景下的杂波功率分布

    图  3  杂波数据和目标数据的流形分布

    图  4  基于不同几何度量的流形变换后分布

    图  5  K分布杂波背景下,不同方法的检测性能比较(无干扰)

    图  6  K分布杂波背景下,不同方法的检测性能比较(含干扰)

    图  7  两组海杂波数据功率分布

    图  8  两组海杂波数据功率谱(第15个距离单元)

    图  9  基于海杂波数据 #1不同方法的检测性能比较

    图  10  基于海杂波数据 #2 不同方法的检测性能比较

    表  1  实测杂波数据拟合优度检验结果

    统计分布模型 KL距离 KS统计量
    正态分布 2.33 0.16
    对数正态分布 0.94 0.11
    瑞利分布 4.78 0.23
    韦布尔分布 1.56 0.12
    K分布 0.78 0.06
    下载: 导出CSV

    表  2  IPIX雷达数据信息

    数据号文件名距离单元数脉冲数
    数据 #119980223_190901_ANTSTEP.CDF3460000
    数据 #219980223_191339_ANTSTEP.CDF3460000
    下载: 导出CSV
  • [1] WATTS S. Cell-averaging CFAR gain in spatially correlated K-distributed clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5): 321–327. doi: 10.1049/ip-rsn:19960745.
    [2] WANG Sichun, INKOL R, RAJAN S, et al. Performance analysis of the FFT filter bank-based summation CFAR detector[C]. 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, Canada, 2008: 452–456. doi: 10.1109/IMTC.2008.4547078.
    [3] KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745.
    [4] LIU Weijian, LIU Jun, HAO Chengpeng, et al. Multichannel adaptive signal detection: Basic theory and literature review[J]. Science China Information Sciences, 2022, 65(2): 121301. doi: 10.1007/s11432-020-3211-8.
    [5] 薛健, 朱圆玲, 潘美艳. 基于海杂波先验知识的雷达目标自适应Rao检测[J]. 电子与信息学报, 2023, 45(11): 3839–3847. doi: 10.11999/JEIT221216.

    XUE Jian, ZHU Yuanling, and PAN Meiyan. Adaptive Rao detection of radar targets based on the priori-knowledge of sea clutter[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3839–3847. doi: 10.11999/JEIT221216.
    [6] ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446.
    [7] COLUCCIA A, FASCISTA A, and RICCI G. CFAR feature plane: A novel framework for the analysis and design of radar detectors[J]. IEEE Transactions on Signal Processing, 2020, 68: 3903–3916. doi: 10.1109/TSP.2020.3000952.
    [8] CONTE E, LOPS M, and RICCI G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617–625. doi: 10.1109/7.381910.
    [9] 许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084.

    XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084.
    [10] 许述文, 焦银萍, 白晓惠, 等. 基于频域多通道图特征感知的海面小目标检测[J]. 电子与信息学报, 2023, 45(5): 1567–1574. doi: 10.11999/JEIT220188.

    XU Shuwen, JIAO Yinping, BAI Xiaohui, et al. Small target detection based on frequency domain multichannel graph feature perception on sea surface[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1567–1574. doi: 10.11999/JEIT220188.
    [11] WU Xijie, DING Hao, LIU Ningbo, et al. A method for detecting small targets in sea surface based on singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5110817. doi: 10.1109/TGRS.2021.3138488.
    [12] GUO Juan, HAO Guocheng, YU Jiantao, et al. Floating target detection in sea clutter via deshape multiple synchrosqueezing transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4285–4294. doi: 10.1109/TAES.2024.3373717.
    [13] 尹鹏智, 戴恩泽. 基于变换域分形的海面小目标快速检测[J]. 电光与控制, 2022, 29(9): 17–21. doi: 10.3969/j.issn.1671-637X.2022.09.004.

    YIN Pengzhi and DAI Enze. Fast sea surface small target detection based on transform domain fractal[J]. Electronics Optics & Control, 2022, 29(9): 17–21. doi: 10.3969/j.issn.1671-637X.2022.09.004.
    [14] 董云龙, 张兆祥, 刘宁波, 等. 海杂波多普勒谱Hurst指数特性分析及目标检测[J]. 雷达科学与技术, 2023, 21(4): 355–363,374. doi: 10.3969/j.issn.1672-2337.2023.04.001.

    DONG Yunlong, ZHANG Zhaoxiang, LIU Ningbo, et al. Characteristic analysis on Hurst index of sea clutter Doppler spectrum and target detection[J]. Radar Science and Technology, 2023, 21(4): 355–363,374. doi: 10.3969/j.issn.1672-2337.2023.04.001.
    [15] BAI Xiaohui, XU Shuwen, ZHU Jianan, et al. Floating small target detection in sea clutter based on multifeature angle variance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9422–9436. doi: 10.1109/JSTARS.2023.3321998.
    [16] 陈小龙, 何肖阳, 邓振华, 等. 雷达微弱目标智能化处理技术与应用[J]. 雷达学报, 2024, 13(3): 501–524. doi: 10.12000/JR23160.

    CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, et al. Radar intelligent processing technology and application for weak target[J]. Journal of Radars, 2024, 13(3): 501–524. doi: 10.12000/JR23160.
    [17] CHEN Xiaolong, SU Ningyuan, HUANG Yong, et al. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs[J]. IEEE Sensors Journal, 2021, 21(7): 9099–9111. doi: 10.1109/JSEN.2021.3054744.
    [18] 苏宁远, 陈小龙, 关键, 等. 基于深度学习的海上目标一维序列信号目标检测方法[J]. 信号处理, 2020, 36(12): 1987–1997. doi: 10.16798/j.issn.1003-0530.2020.12.004.

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. One-dimensional sequence signal detection method for marine target based on deep learning[J]. Journal of Signal Processing, 2020, 36(12): 1987–1997. doi: 10.16798/j.issn.1003-0530.2020.12.004.
    [19] 黎湘, 程永强, 王宏强, 等. 信息几何理论与应用研究进展[J]. 中国科学: 信息科学, 2013, 43(6): 707–732. doi: 10.1360/112012-424.

    LI Xiang, CHENG Yongqiang, WANG Hongqiang, et al. Progress in theory and applications of information geometry[J]. SCIENTIA SINICA Informationis, 2013, 43(6): 707–732. doi: 10.1360/112012-424.
    [20] CHENG Yongqiang, HUA Yongqiang, WANG Yongqiang, et al. The geometry of signal detection with applications to radar signal processing[J]. Entropy, 2016, 18(11): 381. doi: 10.3390/e18110381.
    [21] CHEN Xixi, CHENG Yongqiang, WU Hao, et al. Heterogeneous clutter suppression via affine transformation on Riemannian manifold of HPD matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5109813. doi: 10.1109/TGRS.2022.3147494.
    [22] WU Hao, CHENG Yongqiang, CHEN Xixi, et al. Information geometry-based track-before-detect algorithm for slow-moving fluctuating target detection[J]. IEEE Transactions on Signal Processing, 2023, 71: 1833–1848. doi: 10.1109/TSP.2023.3277205.
    [23] ARNAUDON M, BARBARESCO F, and YANG Le. Riemannian medians and means with applications to radar signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 595–604. doi: 10.1109/JSTSP.2013.2261798.
    [24] YANG Zheng, CHENG Yongqiang, WU Hao, et al. Manifold projection-based subband matrix information geometry detection for radar targets in sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5110415. doi: 10.1109/TGRS.2023.3323663.
    [25] WU Hao, CHENG Yongqiang, CHEN Xixi, et al. Geodesic normal coordinate-based manifold filtering for target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114615. doi: 10.1109/TGRS.2022.3183432.
    [26] 杨政, 程永强, 吴昊, 等. 基于正交投影的子带信息几何雷达弱小目标检测方法[J]. 雷达学报, 2023, 12(4): 776–792. doi: 10.12000/JR23079.

    YANG Zheng, CHENG Yongqiang, WU Hao, et al. Subband information geometry detection method based on orthogonal projection for weak radar targets[J]. Journal of Radars, 2023, 12(4): 776–792. doi: 10.12000/JR23079.
    [27] BARBARESCO F and MEIER U. Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air[J]. Comptes Rendus Physique, 2010, 11(1): 54–67. doi: 10.1016/j.crhy.2010.01.001.
    [28] HUA Xiaoqiang, ONO Y, PENG Linyu, et al. Target detection within nonhomogeneous clutter via total bregman divergence-based matrix information geometry detectors[J]. IEEE Transactions on Signal Processing, 2021, 69: 4326–4340. doi: 10.1109/TSP.2021.3095725.
    [29] HUA Xiaoqiang, CHENG Yongqiang, WANG Yongqiang, et al. Robust covariance estimators based on information divergences and Riemannian manifold[J]. Entropy, 2018, 20(4): 219. doi: 10.3390/e20040219.
    [30] HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Geometric means and medians with applications to target detection[J]. IET Signal Processing, 2017, 11(6): 711–720. doi: 10.1049/iet-spr.2016.0547.
    [31] HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Matrix CFAR detectors based on symmetrized Kullback–Leibler and total Kullback–Leibler divergences[J]. Digital Signal Processing, 2017, 69: 106–116. doi: 10.1016/j.dsp.2017.06.019.
    [32] 赵文静, 金明录, 刘文龙. 基于谱范数的矩阵CFAR检测器[J]. 电子学报, 2019, 47(9): 1951–1956. doi: 10.3969/j.issn.0372-2112.2019.09.019.

    ZHAO Wenjing, JIN Minglu, and LIU Wenlong. Matrix CFAR detector based on matrix spectral norm[J]. Acta Electronica Sinica, 2019, 47(9): 1951–1956. doi: 10.3969/j.issn.0372-2112.2019.09.019.
    [33] 王宏强, 程永强, 华小强, 等. 基于流形等距映射的矩阵信息几何检测方法[J]. 太赫兹科学与电子信息学报, 2023, 21(4): 523–529. doi: 10.11805/TKYDA2023039.

    WANG Hongqiang, CHENG Yongqiang, HUA Xiaoqiang, et al. Matrix information geometry method based on manifold ISOMAP[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21(4): 523–529. doi: 10.11805/TKYDA2023039.
    [34] HUA Xiaoqiang, PENG Linyu, LIU Weijian, et al. LDA-MIG detectors for maritime targets in nonhomogeneous sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5101815. doi: 10.1109/TGRS.2023.3250990.
    [35] IPIX RADAR FILE. IPIX radar dataset files in Grimsby on the shores of Lake Ontari[EB/OL]. http://soma.mcmaster.ca/ipix.php, 2003.
    [36] DO T N, KADDOUM G, NGUYEN T L, et al. Multi-RIS-aided wireless systems: Statistical characterization and performance analysis[J]. IEEE Transactions on Communications, 2021, 69(12): 8641–8658. doi: 10.1109/TCOMM.2021.3117599.
    [37] VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
    [38] UDRIŞTE C. Convex Functions and Optimization Methods on Riemannian Manifolds[M]. Dordrecht, The Netherlands: Springer, 1994. doi: 10.1007/978-94-015-8390-9.
    [39] ABSIL P A, MAHONY R, and SEPULCHRE R. Optimization Algorithms on Matrix Manifolds[M]. Princeton, USA: Princeton University Press, 2008. doi: 10.1515/9781400830244.
    [40] ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue-based target detection for the K-distributed clutter environment[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1294–1306. doi: 10.1049/iet-rsn.2018.5229.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  29
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 修回日期:  2024-09-06
  • 网络出版日期:  2024-09-28

目录

    /

    返回文章
    返回